Step |
Hyp |
Ref |
Expression |
1 |
|
ioorrnopnxrlem.x |
|- ( ph -> X e. Fin ) |
2 |
|
ioorrnopnxrlem.a |
|- ( ph -> A : X --> RR* ) |
3 |
|
ioorrnopnxrlem.b |
|- ( ph -> B : X --> RR* ) |
4 |
|
ioorrnopnxrlem.f |
|- ( ph -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
5 |
|
ioorrnopnxrlem.l |
|- L = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) |
6 |
|
ioorrnopnxrlem.r |
|- R = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) |
7 |
|
ioorrnopnxrlem.v |
|- V = X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) |
8 |
7
|
a1i |
|- ( ph -> V = X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) ) |
9 |
|
iftrue |
|- ( ( A ` i ) = -oo -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( ( F ` i ) - 1 ) ) |
10 |
9
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( ( F ` i ) - 1 ) ) |
11 |
4
|
adantr |
|- ( ( ph /\ i e. X ) -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
12 |
|
simpr |
|- ( ( ph /\ i e. X ) -> i e. X ) |
13 |
|
fvixp2 |
|- ( ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
14 |
11 12 13
|
syl2anc |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
15 |
14
|
elioored |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. RR ) |
16 |
|
1red |
|- ( ( ph /\ i e. X ) -> 1 e. RR ) |
17 |
15 16
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) - 1 ) e. RR ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( F ` i ) - 1 ) e. RR ) |
19 |
10 18
|
eqeltrd |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) |
20 |
|
iffalse |
|- ( -. ( A ` i ) = -oo -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( A ` i ) ) |
21 |
20
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( A ` i ) ) |
22 |
|
neqne |
|- ( -. ( A ` i ) = -oo -> ( A ` i ) =/= -oo ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) =/= -oo ) |
24 |
2
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( A ` i ) e. RR* ) |
25 |
24
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) e. RR* ) |
26 |
|
simpr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) =/= -oo ) |
27 |
|
pnfxr |
|- +oo e. RR* |
28 |
27
|
a1i |
|- ( ( ph /\ i e. X ) -> +oo e. RR* ) |
29 |
15
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. RR* ) |
30 |
3
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( B ` i ) e. RR* ) |
31 |
|
ioogtlb |
|- ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( A ` i ) < ( F ` i ) ) |
32 |
24 30 14 31
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( A ` i ) < ( F ` i ) ) |
33 |
15
|
ltpnfd |
|- ( ( ph /\ i e. X ) -> ( F ` i ) < +oo ) |
34 |
24 29 28 32 33
|
xrlttrd |
|- ( ( ph /\ i e. X ) -> ( A ` i ) < +oo ) |
35 |
24 28 34
|
xrltned |
|- ( ( ph /\ i e. X ) -> ( A ` i ) =/= +oo ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) =/= +oo ) |
37 |
25 26 36
|
xrred |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) e. RR ) |
38 |
23 37
|
syldan |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) e. RR ) |
39 |
21 38
|
eqeltrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) |
40 |
19 39
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) |
41 |
40 5
|
fmptd |
|- ( ph -> L : X --> RR ) |
42 |
|
iftrue |
|- ( ( B ` i ) = +oo -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( ( F ` i ) + 1 ) ) |
43 |
42
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( ( F ` i ) + 1 ) ) |
44 |
15 16
|
readdcld |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) + 1 ) e. RR ) |
45 |
44
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) e. RR ) |
46 |
43 45
|
eqeltrd |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) |
47 |
|
iffalse |
|- ( -. ( B ` i ) = +oo -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( B ` i ) ) |
48 |
47
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( B ` i ) ) |
49 |
|
neqne |
|- ( -. ( B ` i ) = +oo -> ( B ` i ) =/= +oo ) |
50 |
49
|
adantl |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) =/= +oo ) |
51 |
30
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) e. RR* ) |
52 |
|
mnfxr |
|- -oo e. RR* |
53 |
52
|
a1i |
|- ( ( ph /\ i e. X ) -> -oo e. RR* ) |
54 |
15
|
mnfltd |
|- ( ( ph /\ i e. X ) -> -oo < ( F ` i ) ) |
55 |
|
iooltub |
|- ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( F ` i ) < ( B ` i ) ) |
56 |
24 30 14 55
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( F ` i ) < ( B ` i ) ) |
57 |
53 29 30 54 56
|
xrlttrd |
|- ( ( ph /\ i e. X ) -> -oo < ( B ` i ) ) |
58 |
53 30 57
|
xrgtned |
|- ( ( ph /\ i e. X ) -> ( B ` i ) =/= -oo ) |
59 |
58
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) =/= -oo ) |
60 |
|
simpr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) =/= +oo ) |
61 |
51 59 60
|
xrred |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) e. RR ) |
62 |
50 61
|
syldan |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) e. RR ) |
63 |
48 62
|
eqeltrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) |
64 |
46 63
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) |
65 |
64 6
|
fmptd |
|- ( ph -> R : X --> RR ) |
66 |
1 41 65
|
ioorrnopn |
|- ( ph -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
67 |
8 66
|
eqeltrd |
|- ( ph -> V e. ( TopOpen ` ( RR^ ` X ) ) ) |
68 |
4
|
elexd |
|- ( ph -> F e. _V ) |
69 |
|
ixpfn |
|- ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> F Fn X ) |
70 |
4 69
|
syl |
|- ( ph -> F Fn X ) |
71 |
41
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( L ` i ) e. RR ) |
72 |
71
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( L ` i ) e. RR* ) |
73 |
65
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( R ` i ) e. RR ) |
74 |
73
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( R ` i ) e. RR* ) |
75 |
5
|
a1i |
|- ( ph -> L = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) ) |
76 |
40
|
elexd |
|- ( ( ph /\ i e. X ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. _V ) |
77 |
75 76
|
fvmpt2d |
|- ( ( ph /\ i e. X ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) |
78 |
77
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) |
79 |
78 10
|
eqtrd |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) = ( ( F ` i ) - 1 ) ) |
80 |
15
|
ltm1d |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) - 1 ) < ( F ` i ) ) |
81 |
80
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( F ` i ) - 1 ) < ( F ` i ) ) |
82 |
79 81
|
eqbrtrd |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) < ( F ` i ) ) |
83 |
77
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) |
84 |
83 21
|
eqtrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) = ( A ` i ) ) |
85 |
32
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) < ( F ` i ) ) |
86 |
84 85
|
eqbrtrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) < ( F ` i ) ) |
87 |
82 86
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> ( L ` i ) < ( F ` i ) ) |
88 |
15
|
ltp1d |
|- ( ( ph /\ i e. X ) -> ( F ` i ) < ( ( F ` i ) + 1 ) ) |
89 |
88
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( F ` i ) < ( ( F ` i ) + 1 ) ) |
90 |
6
|
a1i |
|- ( ph -> R = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) ) |
91 |
64
|
elexd |
|- ( ( ph /\ i e. X ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. _V ) |
92 |
90 91
|
fvmpt2d |
|- ( ( ph /\ i e. X ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) |
93 |
92
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) |
94 |
93 43
|
eqtrd |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) = ( ( F ` i ) + 1 ) ) |
95 |
94
|
eqcomd |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) = ( R ` i ) ) |
96 |
89 95
|
breqtrd |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( F ` i ) < ( R ` i ) ) |
97 |
56
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( F ` i ) < ( B ` i ) ) |
98 |
92
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) |
99 |
98 48
|
eqtrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) = ( B ` i ) ) |
100 |
99
|
eqcomd |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) = ( R ` i ) ) |
101 |
97 100
|
breqtrd |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( F ` i ) < ( R ` i ) ) |
102 |
96 101
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> ( F ` i ) < ( R ` i ) ) |
103 |
72 74 15 87 102
|
eliood |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) |
104 |
103
|
ralrimiva |
|- ( ph -> A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) |
105 |
68 70 104
|
3jca |
|- ( ph -> ( F e. _V /\ F Fn X /\ A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) ) |
106 |
|
elixp2 |
|- ( F e. X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) <-> ( F e. _V /\ F Fn X /\ A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) ) |
107 |
105 106
|
sylibr |
|- ( ph -> F e. X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) ) |
108 |
107 7
|
eleqtrrdi |
|- ( ph -> F e. V ) |
109 |
24
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) e. RR* ) |
110 |
72
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) e. RR* ) |
111 |
19
|
mnfltd |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> -oo < if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) |
112 |
111 10
|
breqtrd |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> -oo < ( ( F ` i ) - 1 ) ) |
113 |
|
simpr |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) = -oo ) |
114 |
113 79
|
breq12d |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( A ` i ) < ( L ` i ) <-> -oo < ( ( F ` i ) - 1 ) ) ) |
115 |
112 114
|
mpbird |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) < ( L ` i ) ) |
116 |
109 110 115
|
xrltled |
|- ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) <_ ( L ` i ) ) |
117 |
84
|
eqcomd |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) = ( L ` i ) ) |
118 |
38 117
|
eqled |
|- ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) <_ ( L ` i ) ) |
119 |
116 118
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> ( A ` i ) <_ ( L ` i ) ) |
120 |
74
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) e. RR* ) |
121 |
30
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( B ` i ) e. RR* ) |
122 |
45
|
ltpnfd |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) < +oo ) |
123 |
|
simpr |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( B ` i ) = +oo ) |
124 |
94 123
|
breq12d |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( R ` i ) < ( B ` i ) <-> ( ( F ` i ) + 1 ) < +oo ) ) |
125 |
122 124
|
mpbird |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) < ( B ` i ) ) |
126 |
120 121 125
|
xrltled |
|- ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) <_ ( B ` i ) ) |
127 |
73
|
adantr |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) e. RR ) |
128 |
127 99
|
eqled |
|- ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) <_ ( B ` i ) ) |
129 |
126 128
|
pm2.61dan |
|- ( ( ph /\ i e. X ) -> ( R ` i ) <_ ( B ` i ) ) |
130 |
|
ioossioo |
|- ( ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* ) /\ ( ( A ` i ) <_ ( L ` i ) /\ ( R ` i ) <_ ( B ` i ) ) ) -> ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) |
131 |
24 30 119 129 130
|
syl22anc |
|- ( ( ph /\ i e. X ) -> ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) |
132 |
131
|
ralrimiva |
|- ( ph -> A. i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) |
133 |
|
ss2ixp |
|- ( A. i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
134 |
132 133
|
syl |
|- ( ph -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
135 |
8 134
|
eqsstrd |
|- ( ph -> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
136 |
108 135
|
jca |
|- ( ph -> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
137 |
|
eleq2 |
|- ( v = V -> ( F e. v <-> F e. V ) ) |
138 |
|
sseq1 |
|- ( v = V -> ( v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
139 |
137 138
|
anbi12d |
|- ( v = V -> ( ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) <-> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) |
140 |
139
|
rspcev |
|- ( ( V e. ( TopOpen ` ( RR^ ` X ) ) /\ ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
141 |
67 136 140
|
syl2anc |
|- ( ph -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |