| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopnxrlem.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | ioorrnopnxrlem.a |  |-  ( ph -> A : X --> RR* ) | 
						
							| 3 |  | ioorrnopnxrlem.b |  |-  ( ph -> B : X --> RR* ) | 
						
							| 4 |  | ioorrnopnxrlem.f |  |-  ( ph -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 5 |  | ioorrnopnxrlem.l |  |-  L = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) | 
						
							| 6 |  | ioorrnopnxrlem.r |  |-  R = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) | 
						
							| 7 |  | ioorrnopnxrlem.v |  |-  V = X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> V = X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) ) | 
						
							| 9 |  | iftrue |  |-  ( ( A ` i ) = -oo -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( ( F ` i ) - 1 ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( ( F ` i ) - 1 ) ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ i e. X ) -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ i e. X ) -> i e. X ) | 
						
							| 13 |  | fvixp2 |  |-  ( ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 15 | 14 | elioored |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. RR ) | 
						
							| 16 |  | 1red |  |-  ( ( ph /\ i e. X ) -> 1 e. RR ) | 
						
							| 17 | 15 16 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) - 1 ) e. RR ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( F ` i ) - 1 ) e. RR ) | 
						
							| 19 | 10 18 | eqeltrd |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) | 
						
							| 20 |  | iffalse |  |-  ( -. ( A ` i ) = -oo -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( A ` i ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) = ( A ` i ) ) | 
						
							| 22 |  | neqne |  |-  ( -. ( A ` i ) = -oo -> ( A ` i ) =/= -oo ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) =/= -oo ) | 
						
							| 24 | 2 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) e. RR* ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) e. RR* ) | 
						
							| 26 |  | simpr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) =/= -oo ) | 
						
							| 27 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ i e. X ) -> +oo e. RR* ) | 
						
							| 29 | 15 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. RR* ) | 
						
							| 30 | 3 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( B ` i ) e. RR* ) | 
						
							| 31 |  | ioogtlb |  |-  ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( A ` i ) < ( F ` i ) ) | 
						
							| 32 | 24 30 14 31 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) < ( F ` i ) ) | 
						
							| 33 | 15 | ltpnfd |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) < +oo ) | 
						
							| 34 | 24 29 28 32 33 | xrlttrd |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) < +oo ) | 
						
							| 35 | 24 28 34 | xrltned |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) =/= +oo ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) =/= +oo ) | 
						
							| 37 | 25 26 36 | xrred |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) =/= -oo ) -> ( A ` i ) e. RR ) | 
						
							| 38 | 23 37 | syldan |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) e. RR ) | 
						
							| 39 | 21 38 | eqeltrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) | 
						
							| 40 | 19 39 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. RR ) | 
						
							| 41 | 40 5 | fmptd |  |-  ( ph -> L : X --> RR ) | 
						
							| 42 |  | iftrue |  |-  ( ( B ` i ) = +oo -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( ( F ` i ) + 1 ) ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( ( F ` i ) + 1 ) ) | 
						
							| 44 | 15 16 | readdcld |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) + 1 ) e. RR ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) e. RR ) | 
						
							| 46 | 43 45 | eqeltrd |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) | 
						
							| 47 |  | iffalse |  |-  ( -. ( B ` i ) = +oo -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( B ` i ) ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) = ( B ` i ) ) | 
						
							| 49 |  | neqne |  |-  ( -. ( B ` i ) = +oo -> ( B ` i ) =/= +oo ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) =/= +oo ) | 
						
							| 51 | 30 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) e. RR* ) | 
						
							| 52 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 53 | 52 | a1i |  |-  ( ( ph /\ i e. X ) -> -oo e. RR* ) | 
						
							| 54 | 15 | mnfltd |  |-  ( ( ph /\ i e. X ) -> -oo < ( F ` i ) ) | 
						
							| 55 |  | iooltub |  |-  ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( F ` i ) < ( B ` i ) ) | 
						
							| 56 | 24 30 14 55 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) < ( B ` i ) ) | 
						
							| 57 | 53 29 30 54 56 | xrlttrd |  |-  ( ( ph /\ i e. X ) -> -oo < ( B ` i ) ) | 
						
							| 58 | 53 30 57 | xrgtned |  |-  ( ( ph /\ i e. X ) -> ( B ` i ) =/= -oo ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) =/= -oo ) | 
						
							| 60 |  | simpr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) =/= +oo ) | 
						
							| 61 | 51 59 60 | xrred |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) =/= +oo ) -> ( B ` i ) e. RR ) | 
						
							| 62 | 50 61 | syldan |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) e. RR ) | 
						
							| 63 | 48 62 | eqeltrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) | 
						
							| 64 | 46 63 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. RR ) | 
						
							| 65 | 64 6 | fmptd |  |-  ( ph -> R : X --> RR ) | 
						
							| 66 | 1 41 65 | ioorrnopn |  |-  ( ph -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 67 | 8 66 | eqeltrd |  |-  ( ph -> V e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 68 | 4 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 69 |  | ixpfn |  |-  ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> F Fn X ) | 
						
							| 70 | 4 69 | syl |  |-  ( ph -> F Fn X ) | 
						
							| 71 | 41 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( L ` i ) e. RR ) | 
						
							| 72 | 71 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( L ` i ) e. RR* ) | 
						
							| 73 | 65 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( R ` i ) e. RR ) | 
						
							| 74 | 73 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( R ` i ) e. RR* ) | 
						
							| 75 | 5 | a1i |  |-  ( ph -> L = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) ) | 
						
							| 76 | 40 | elexd |  |-  ( ( ph /\ i e. X ) -> if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) e. _V ) | 
						
							| 77 | 75 76 | fvmpt2d |  |-  ( ( ph /\ i e. X ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) | 
						
							| 79 | 78 10 | eqtrd |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) = ( ( F ` i ) - 1 ) ) | 
						
							| 80 | 15 | ltm1d |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) - 1 ) < ( F ` i ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( F ` i ) - 1 ) < ( F ` i ) ) | 
						
							| 82 | 79 81 | eqbrtrd |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) < ( F ` i ) ) | 
						
							| 83 | 77 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) = if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) | 
						
							| 84 | 83 21 | eqtrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) = ( A ` i ) ) | 
						
							| 85 | 32 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) < ( F ` i ) ) | 
						
							| 86 | 84 85 | eqbrtrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( L ` i ) < ( F ` i ) ) | 
						
							| 87 | 82 86 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> ( L ` i ) < ( F ` i ) ) | 
						
							| 88 | 15 | ltp1d |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) < ( ( F ` i ) + 1 ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( F ` i ) < ( ( F ` i ) + 1 ) ) | 
						
							| 90 | 6 | a1i |  |-  ( ph -> R = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) ) | 
						
							| 91 | 64 | elexd |  |-  ( ( ph /\ i e. X ) -> if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) e. _V ) | 
						
							| 92 | 90 91 | fvmpt2d |  |-  ( ( ph /\ i e. X ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) | 
						
							| 94 | 93 43 | eqtrd |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) = ( ( F ` i ) + 1 ) ) | 
						
							| 95 | 94 | eqcomd |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) = ( R ` i ) ) | 
						
							| 96 | 89 95 | breqtrd |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( F ` i ) < ( R ` i ) ) | 
						
							| 97 | 56 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( F ` i ) < ( B ` i ) ) | 
						
							| 98 | 92 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) = if ( ( B ` i ) = +oo , ( ( F ` i ) + 1 ) , ( B ` i ) ) ) | 
						
							| 99 | 98 48 | eqtrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) = ( B ` i ) ) | 
						
							| 100 | 99 | eqcomd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( B ` i ) = ( R ` i ) ) | 
						
							| 101 | 97 100 | breqtrd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( F ` i ) < ( R ` i ) ) | 
						
							| 102 | 96 101 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) < ( R ` i ) ) | 
						
							| 103 | 72 74 15 87 102 | eliood |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) | 
						
							| 104 | 103 | ralrimiva |  |-  ( ph -> A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) | 
						
							| 105 | 68 70 104 | 3jca |  |-  ( ph -> ( F e. _V /\ F Fn X /\ A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) ) | 
						
							| 106 |  | elixp2 |  |-  ( F e. X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) <-> ( F e. _V /\ F Fn X /\ A. i e. X ( F ` i ) e. ( ( L ` i ) (,) ( R ` i ) ) ) ) | 
						
							| 107 | 105 106 | sylibr |  |-  ( ph -> F e. X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) ) | 
						
							| 108 | 107 7 | eleqtrrdi |  |-  ( ph -> F e. V ) | 
						
							| 109 | 24 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) e. RR* ) | 
						
							| 110 | 72 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( L ` i ) e. RR* ) | 
						
							| 111 | 19 | mnfltd |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> -oo < if ( ( A ` i ) = -oo , ( ( F ` i ) - 1 ) , ( A ` i ) ) ) | 
						
							| 112 | 111 10 | breqtrd |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> -oo < ( ( F ` i ) - 1 ) ) | 
						
							| 113 |  | simpr |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) = -oo ) | 
						
							| 114 | 113 79 | breq12d |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( ( A ` i ) < ( L ` i ) <-> -oo < ( ( F ` i ) - 1 ) ) ) | 
						
							| 115 | 112 114 | mpbird |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) < ( L ` i ) ) | 
						
							| 116 | 109 110 115 | xrltled |  |-  ( ( ( ph /\ i e. X ) /\ ( A ` i ) = -oo ) -> ( A ` i ) <_ ( L ` i ) ) | 
						
							| 117 | 84 | eqcomd |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) = ( L ` i ) ) | 
						
							| 118 | 38 117 | eqled |  |-  ( ( ( ph /\ i e. X ) /\ -. ( A ` i ) = -oo ) -> ( A ` i ) <_ ( L ` i ) ) | 
						
							| 119 | 116 118 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) <_ ( L ` i ) ) | 
						
							| 120 | 74 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) e. RR* ) | 
						
							| 121 | 30 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( B ` i ) e. RR* ) | 
						
							| 122 | 45 | ltpnfd |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( F ` i ) + 1 ) < +oo ) | 
						
							| 123 |  | simpr |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( B ` i ) = +oo ) | 
						
							| 124 | 94 123 | breq12d |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( ( R ` i ) < ( B ` i ) <-> ( ( F ` i ) + 1 ) < +oo ) ) | 
						
							| 125 | 122 124 | mpbird |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) < ( B ` i ) ) | 
						
							| 126 | 120 121 125 | xrltled |  |-  ( ( ( ph /\ i e. X ) /\ ( B ` i ) = +oo ) -> ( R ` i ) <_ ( B ` i ) ) | 
						
							| 127 | 73 | adantr |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) e. RR ) | 
						
							| 128 | 127 99 | eqled |  |-  ( ( ( ph /\ i e. X ) /\ -. ( B ` i ) = +oo ) -> ( R ` i ) <_ ( B ` i ) ) | 
						
							| 129 | 126 128 | pm2.61dan |  |-  ( ( ph /\ i e. X ) -> ( R ` i ) <_ ( B ` i ) ) | 
						
							| 130 |  | ioossioo |  |-  ( ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* ) /\ ( ( A ` i ) <_ ( L ` i ) /\ ( R ` i ) <_ ( B ` i ) ) ) -> ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 131 | 24 30 119 129 130 | syl22anc |  |-  ( ( ph /\ i e. X ) -> ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 132 | 131 | ralrimiva |  |-  ( ph -> A. i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 133 |  | ss2ixp |  |-  ( A. i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ ( ( A ` i ) (,) ( B ` i ) ) -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 134 | 132 133 | syl |  |-  ( ph -> X_ i e. X ( ( L ` i ) (,) ( R ` i ) ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 135 | 8 134 | eqsstrd |  |-  ( ph -> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 136 | 108 135 | jca |  |-  ( ph -> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 137 |  | eleq2 |  |-  ( v = V -> ( F e. v <-> F e. V ) ) | 
						
							| 138 |  | sseq1 |  |-  ( v = V -> ( v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 139 | 137 138 | anbi12d |  |-  ( v = V -> ( ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) <-> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) | 
						
							| 140 | 139 | rspcev |  |-  ( ( V e. ( TopOpen ` ( RR^ ` X ) ) /\ ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 141 | 67 136 140 | syl2anc |  |-  ( ph -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |