Metamath Proof Explorer


Theorem ioorrnopnxr

Description: The indexed product of open intervals is an open set in ( RR^X ) . Similar to ioorrnopn but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ioorrnopnxr.x
|- ( ph -> X e. Fin )
ioorrnopnxr.a
|- ( ph -> A : X --> RR* )
ioorrnopnxr.b
|- ( ph -> B : X --> RR* )
Assertion ioorrnopnxr
|- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )

Proof

Step Hyp Ref Expression
1 ioorrnopnxr.x
 |-  ( ph -> X e. Fin )
2 ioorrnopnxr.a
 |-  ( ph -> A : X --> RR* )
3 ioorrnopnxr.b
 |-  ( ph -> B : X --> RR* )
4 p0ex
 |-  { (/) } e. _V
5 4 prid2
 |-  { (/) } e. { (/) , { (/) } }
6 5 a1i
 |-  ( X = (/) -> { (/) } e. { (/) , { (/) } } )
7 ixpeq1
 |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) )
8 ixp0x
 |-  X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) }
9 8 a1i
 |-  ( X = (/) -> X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) } )
10 7 9 eqtrd
 |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = { (/) } )
11 2fveq3
 |-  ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` (/) ) ) )
12 rrxtopn0b
 |-  ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } }
13 12 a1i
 |-  ( X = (/) -> ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } } )
14 11 13 eqtrd
 |-  ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = { (/) , { (/) } } )
15 10 14 eleq12d
 |-  ( X = (/) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> { (/) } e. { (/) , { (/) } } ) )
16 6 15 mpbird
 |-  ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )
17 16 adantl
 |-  ( ( ph /\ X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )
18 neqne
 |-  ( -. X = (/) -> X =/= (/) )
19 18 adantl
 |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) )
20 fveq2
 |-  ( i = j -> ( A ` i ) = ( A ` j ) )
21 fveq2
 |-  ( i = j -> ( B ` i ) = ( B ` j ) )
22 20 21 oveq12d
 |-  ( i = j -> ( ( A ` i ) (,) ( B ` i ) ) = ( ( A ` j ) (,) ( B ` j ) ) )
23 22 cbvixpv
 |-  X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ j e. X ( ( A ` j ) (,) ( B ` j ) )
24 23 eleq2i
 |-  ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) )
25 24 biimpi
 |-  ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) )
26 25 adantl
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) )
27 1 ad2antrr
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> X e. Fin )
28 2 ad2antrr
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> A : X --> RR* )
29 3 ad2antrr
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> B : X --> RR* )
30 24 biimpri
 |-  ( f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) )
31 30 adantl
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) )
32 fveq2
 |-  ( j = i -> ( A ` j ) = ( A ` i ) )
33 32 eqeq1d
 |-  ( j = i -> ( ( A ` j ) = -oo <-> ( A ` i ) = -oo ) )
34 fveq2
 |-  ( j = i -> ( f ` j ) = ( f ` i ) )
35 34 oveq1d
 |-  ( j = i -> ( ( f ` j ) - 1 ) = ( ( f ` i ) - 1 ) )
36 33 35 32 ifbieq12d
 |-  ( j = i -> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) = if ( ( A ` i ) = -oo , ( ( f ` i ) - 1 ) , ( A ` i ) ) )
37 36 cbvmptv
 |-  ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( f ` i ) - 1 ) , ( A ` i ) ) )
38 fveq2
 |-  ( j = i -> ( B ` j ) = ( B ` i ) )
39 38 eqeq1d
 |-  ( j = i -> ( ( B ` j ) = +oo <-> ( B ` i ) = +oo ) )
40 34 oveq1d
 |-  ( j = i -> ( ( f ` j ) + 1 ) = ( ( f ` i ) + 1 ) )
41 39 40 38 ifbieq12d
 |-  ( j = i -> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) = if ( ( B ` i ) = +oo , ( ( f ` i ) + 1 ) , ( B ` i ) ) )
42 41 cbvmptv
 |-  ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( f ` i ) + 1 ) , ( B ` i ) ) )
43 eqid
 |-  X_ i e. X ( ( ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) ` i ) (,) ( ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) ` i ) ) = X_ i e. X ( ( ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) ` i ) (,) ( ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) ` i ) )
44 27 28 29 31 37 42 43 ioorrnopnxrlem
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) )
45 26 44 syldan
 |-  ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) )
46 45 ralrimiva
 |-  ( ( ph /\ X =/= (/) ) -> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) )
47 eqid
 |-  ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) )
48 47 rrxtop
 |-  ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. Top )
49 1 48 syl
 |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. Top )
50 49 adantr
 |-  ( ( ph /\ X =/= (/) ) -> ( TopOpen ` ( RR^ ` X ) ) e. Top )
51 eltop2
 |-  ( ( TopOpen ` ( RR^ ` X ) ) e. Top -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) )
52 50 51 syl
 |-  ( ( ph /\ X =/= (/) ) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) )
53 46 52 mpbird
 |-  ( ( ph /\ X =/= (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )
54 19 53 syldan
 |-  ( ( ph /\ -. X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )
55 17 54 pm2.61dan
 |-  ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )