Step |
Hyp |
Ref |
Expression |
1 |
|
ioorrnopnxr.x |
|- ( ph -> X e. Fin ) |
2 |
|
ioorrnopnxr.a |
|- ( ph -> A : X --> RR* ) |
3 |
|
ioorrnopnxr.b |
|- ( ph -> B : X --> RR* ) |
4 |
|
p0ex |
|- { (/) } e. _V |
5 |
4
|
prid2 |
|- { (/) } e. { (/) , { (/) } } |
6 |
5
|
a1i |
|- ( X = (/) -> { (/) } e. { (/) , { (/) } } ) |
7 |
|
ixpeq1 |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) ) |
8 |
|
ixp0x |
|- X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) } |
9 |
8
|
a1i |
|- ( X = (/) -> X_ i e. (/) ( ( A ` i ) (,) ( B ` i ) ) = { (/) } ) |
10 |
7 9
|
eqtrd |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = { (/) } ) |
11 |
|
2fveq3 |
|- ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` (/) ) ) ) |
12 |
|
rrxtopn0b |
|- ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } } |
13 |
12
|
a1i |
|- ( X = (/) -> ( TopOpen ` ( RR^ ` (/) ) ) = { (/) , { (/) } } ) |
14 |
11 13
|
eqtrd |
|- ( X = (/) -> ( TopOpen ` ( RR^ ` X ) ) = { (/) , { (/) } } ) |
15 |
10 14
|
eleq12d |
|- ( X = (/) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> { (/) } e. { (/) , { (/) } } ) ) |
16 |
6 15
|
mpbird |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
18 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
19 |
18
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
20 |
|
fveq2 |
|- ( i = j -> ( A ` i ) = ( A ` j ) ) |
21 |
|
fveq2 |
|- ( i = j -> ( B ` i ) = ( B ` j ) ) |
22 |
20 21
|
oveq12d |
|- ( i = j -> ( ( A ` i ) (,) ( B ` i ) ) = ( ( A ` j ) (,) ( B ` j ) ) ) |
23 |
22
|
cbvixpv |
|- X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) = X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) |
24 |
23
|
eleq2i |
|- ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) |
25 |
24
|
biimpi |
|- ( f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) |
26 |
25
|
adantl |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) |
27 |
1
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> X e. Fin ) |
28 |
2
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> A : X --> RR* ) |
29 |
3
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> B : X --> RR* ) |
30 |
24
|
biimpri |
|- ( f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
31 |
30
|
adantl |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
32 |
|
fveq2 |
|- ( j = i -> ( A ` j ) = ( A ` i ) ) |
33 |
32
|
eqeq1d |
|- ( j = i -> ( ( A ` j ) = -oo <-> ( A ` i ) = -oo ) ) |
34 |
|
fveq2 |
|- ( j = i -> ( f ` j ) = ( f ` i ) ) |
35 |
34
|
oveq1d |
|- ( j = i -> ( ( f ` j ) - 1 ) = ( ( f ` i ) - 1 ) ) |
36 |
33 35 32
|
ifbieq12d |
|- ( j = i -> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) = if ( ( A ` i ) = -oo , ( ( f ` i ) - 1 ) , ( A ` i ) ) ) |
37 |
36
|
cbvmptv |
|- ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) = ( i e. X |-> if ( ( A ` i ) = -oo , ( ( f ` i ) - 1 ) , ( A ` i ) ) ) |
38 |
|
fveq2 |
|- ( j = i -> ( B ` j ) = ( B ` i ) ) |
39 |
38
|
eqeq1d |
|- ( j = i -> ( ( B ` j ) = +oo <-> ( B ` i ) = +oo ) ) |
40 |
34
|
oveq1d |
|- ( j = i -> ( ( f ` j ) + 1 ) = ( ( f ` i ) + 1 ) ) |
41 |
39 40 38
|
ifbieq12d |
|- ( j = i -> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) = if ( ( B ` i ) = +oo , ( ( f ` i ) + 1 ) , ( B ` i ) ) ) |
42 |
41
|
cbvmptv |
|- ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) = ( i e. X |-> if ( ( B ` i ) = +oo , ( ( f ` i ) + 1 ) , ( B ` i ) ) ) |
43 |
|
eqid |
|- X_ i e. X ( ( ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) ` i ) (,) ( ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) ` i ) ) = X_ i e. X ( ( ( j e. X |-> if ( ( A ` j ) = -oo , ( ( f ` j ) - 1 ) , ( A ` j ) ) ) ` i ) (,) ( ( j e. X |-> if ( ( B ` j ) = +oo , ( ( f ` j ) + 1 ) , ( B ` j ) ) ) ` i ) ) |
44 |
27 28 29 31 37 42 43
|
ioorrnopnxrlem |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ j e. X ( ( A ` j ) (,) ( B ` j ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
45 |
26 44
|
syldan |
|- ( ( ( ph /\ X =/= (/) ) /\ f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
46 |
45
|
ralrimiva |
|- ( ( ph /\ X =/= (/) ) -> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
47 |
|
eqid |
|- ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) ) |
48 |
47
|
rrxtop |
|- ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) |
49 |
1 48
|
syl |
|- ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) |
50 |
49
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( TopOpen ` ( RR^ ` X ) ) e. Top ) |
51 |
|
eltop2 |
|- ( ( TopOpen ` ( RR^ ` X ) ) e. Top -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) |
52 |
50 51
|
syl |
|- ( ( ph /\ X =/= (/) ) -> ( X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) <-> A. f e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) E. v e. ( TopOpen ` ( RR^ ` X ) ) ( f e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) |
53 |
46 52
|
mpbird |
|- ( ( ph /\ X =/= (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
54 |
19 53
|
syldan |
|- ( ( ph /\ -. X = (/) ) -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
55 |
17 54
|
pm2.61dan |
|- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |