Step |
Hyp |
Ref |
Expression |
1 |
|
ioorrnopnxr.x |
|
2 |
|
ioorrnopnxr.a |
|
3 |
|
ioorrnopnxr.b |
|
4 |
|
p0ex |
|
5 |
4
|
prid2 |
|
6 |
5
|
a1i |
|
7 |
|
ixpeq1 |
|
8 |
|
ixp0x |
|
9 |
8
|
a1i |
|
10 |
7 9
|
eqtrd |
|
11 |
|
2fveq3 |
|
12 |
|
rrxtopn0b |
|
13 |
12
|
a1i |
|
14 |
11 13
|
eqtrd |
|
15 |
10 14
|
eleq12d |
|
16 |
6 15
|
mpbird |
|
17 |
16
|
adantl |
|
18 |
|
neqne |
|
19 |
18
|
adantl |
|
20 |
|
fveq2 |
|
21 |
|
fveq2 |
|
22 |
20 21
|
oveq12d |
|
23 |
22
|
cbvixpv |
|
24 |
23
|
eleq2i |
|
25 |
24
|
biimpi |
|
26 |
25
|
adantl |
|
27 |
1
|
ad2antrr |
|
28 |
2
|
ad2antrr |
|
29 |
3
|
ad2antrr |
|
30 |
24
|
biimpri |
|
31 |
30
|
adantl |
|
32 |
|
fveq2 |
|
33 |
32
|
eqeq1d |
|
34 |
|
fveq2 |
|
35 |
34
|
oveq1d |
|
36 |
33 35 32
|
ifbieq12d |
|
37 |
36
|
cbvmptv |
|
38 |
|
fveq2 |
|
39 |
38
|
eqeq1d |
|
40 |
34
|
oveq1d |
|
41 |
39 40 38
|
ifbieq12d |
|
42 |
41
|
cbvmptv |
|
43 |
|
eqid |
|
44 |
27 28 29 31 37 42 43
|
ioorrnopnxrlem |
|
45 |
26 44
|
syldan |
|
46 |
45
|
ralrimiva |
|
47 |
|
eqid |
|
48 |
47
|
rrxtop |
|
49 |
1 48
|
syl |
|
50 |
49
|
adantr |
|
51 |
|
eltop2 |
|
52 |
50 51
|
syl |
|
53 |
46 52
|
mpbird |
|
54 |
19 53
|
syldan |
|
55 |
17 54
|
pm2.61dan |
|