| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioorrnopnxr.x |
|
| 2 |
|
ioorrnopnxr.a |
|
| 3 |
|
ioorrnopnxr.b |
|
| 4 |
|
p0ex |
|
| 5 |
4
|
prid2 |
|
| 6 |
5
|
a1i |
|
| 7 |
|
ixpeq1 |
|
| 8 |
|
ixp0x |
|
| 9 |
8
|
a1i |
|
| 10 |
7 9
|
eqtrd |
|
| 11 |
|
2fveq3 |
|
| 12 |
|
rrxtopn0b |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
eqtrd |
|
| 15 |
10 14
|
eleq12d |
|
| 16 |
6 15
|
mpbird |
|
| 17 |
16
|
adantl |
|
| 18 |
|
neqne |
|
| 19 |
18
|
adantl |
|
| 20 |
|
fveq2 |
|
| 21 |
|
fveq2 |
|
| 22 |
20 21
|
oveq12d |
|
| 23 |
22
|
cbvixpv |
|
| 24 |
23
|
eleq2i |
|
| 25 |
24
|
biimpi |
|
| 26 |
25
|
adantl |
|
| 27 |
1
|
ad2antrr |
|
| 28 |
2
|
ad2antrr |
|
| 29 |
3
|
ad2antrr |
|
| 30 |
24
|
biimpri |
|
| 31 |
30
|
adantl |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
oveq1d |
|
| 36 |
33 35 32
|
ifbieq12d |
|
| 37 |
36
|
cbvmptv |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
34
|
oveq1d |
|
| 41 |
39 40 38
|
ifbieq12d |
|
| 42 |
41
|
cbvmptv |
|
| 43 |
|
eqid |
|
| 44 |
27 28 29 31 37 42 43
|
ioorrnopnxrlem |
|
| 45 |
26 44
|
syldan |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
eqid |
|
| 48 |
47
|
rrxtop |
|
| 49 |
1 48
|
syl |
|
| 50 |
49
|
adantr |
|
| 51 |
|
eltop2 |
|
| 52 |
50 51
|
syl |
|
| 53 |
46 52
|
mpbird |
|
| 54 |
19 53
|
syldan |
|
| 55 |
17 54
|
pm2.61dan |
|