Description: The indexed product of open intervals is an open set in ( RR^X ) . Similar to ioorrnopn but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ioorrnopnxr.x | |
|
ioorrnopnxr.a | |
||
ioorrnopnxr.b | |
||
Assertion | ioorrnopnxr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioorrnopnxr.x | |
|
2 | ioorrnopnxr.a | |
|
3 | ioorrnopnxr.b | |
|
4 | p0ex | |
|
5 | 4 | prid2 | |
6 | 5 | a1i | |
7 | ixpeq1 | |
|
8 | ixp0x | |
|
9 | 8 | a1i | |
10 | 7 9 | eqtrd | |
11 | 2fveq3 | |
|
12 | rrxtopn0b | |
|
13 | 12 | a1i | |
14 | 11 13 | eqtrd | |
15 | 10 14 | eleq12d | |
16 | 6 15 | mpbird | |
17 | 16 | adantl | |
18 | neqne | |
|
19 | 18 | adantl | |
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | oveq12d | |
23 | 22 | cbvixpv | |
24 | 23 | eleq2i | |
25 | 24 | biimpi | |
26 | 25 | adantl | |
27 | 1 | ad2antrr | |
28 | 2 | ad2antrr | |
29 | 3 | ad2antrr | |
30 | 24 | biimpri | |
31 | 30 | adantl | |
32 | fveq2 | |
|
33 | 32 | eqeq1d | |
34 | fveq2 | |
|
35 | 34 | oveq1d | |
36 | 33 35 32 | ifbieq12d | |
37 | 36 | cbvmptv | |
38 | fveq2 | |
|
39 | 38 | eqeq1d | |
40 | 34 | oveq1d | |
41 | 39 40 38 | ifbieq12d | |
42 | 41 | cbvmptv | |
43 | eqid | |
|
44 | 27 28 29 31 37 42 43 | ioorrnopnxrlem | |
45 | 26 44 | syldan | |
46 | 45 | ralrimiva | |
47 | eqid | |
|
48 | 47 | rrxtop | |
49 | 1 48 | syl | |
50 | 49 | adantr | |
51 | eltop2 | |
|
52 | 50 51 | syl | |
53 | 46 52 | mpbird | |
54 | 19 53 | syldan | |
55 | 17 54 | pm2.61dan | |