Metamath Proof Explorer


Theorem ioorrnopnxr

Description: The indexed product of open intervals is an open set in ( RR^X ) . Similar to ioorrnopn but here unbounded intervals are allowed. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ioorrnopnxr.x φXFin
ioorrnopnxr.a φA:X*
ioorrnopnxr.b φB:X*
Assertion ioorrnopnxr φiXAiBiTopOpenmsup

Proof

Step Hyp Ref Expression
1 ioorrnopnxr.x φXFin
2 ioorrnopnxr.a φA:X*
3 ioorrnopnxr.b φB:X*
4 p0ex V
5 4 prid2
6 5 a1i X=
7 ixpeq1 X=iXAiBi=iAiBi
8 ixp0x iAiBi=
9 8 a1i X=iAiBi=
10 7 9 eqtrd X=iXAiBi=
11 2fveq3 X=TopOpenmsup=TopOpenmsup
12 rrxtopn0b TopOpenmsup=
13 12 a1i X=TopOpenmsup=
14 11 13 eqtrd X=TopOpenmsup=
15 10 14 eleq12d X=iXAiBiTopOpenmsup
16 6 15 mpbird X=iXAiBiTopOpenmsup
17 16 adantl φX=iXAiBiTopOpenmsup
18 neqne ¬X=X
19 18 adantl φ¬X=X
20 fveq2 i=jAi=Aj
21 fveq2 i=jBi=Bj
22 20 21 oveq12d i=jAiBi=AjBj
23 22 cbvixpv iXAiBi=jXAjBj
24 23 eleq2i fiXAiBifjXAjBj
25 24 biimpi fiXAiBifjXAjBj
26 25 adantl φXfiXAiBifjXAjBj
27 1 ad2antrr φXfjXAjBjXFin
28 2 ad2antrr φXfjXAjBjA:X*
29 3 ad2antrr φXfjXAjBjB:X*
30 24 biimpri fjXAjBjfiXAiBi
31 30 adantl φXfjXAjBjfiXAiBi
32 fveq2 j=iAj=Ai
33 32 eqeq1d j=iAj=−∞Ai=−∞
34 fveq2 j=ifj=fi
35 34 oveq1d j=ifj1=fi1
36 33 35 32 ifbieq12d j=iifAj=−∞fj1Aj=ifAi=−∞fi1Ai
37 36 cbvmptv jXifAj=−∞fj1Aj=iXifAi=−∞fi1Ai
38 fveq2 j=iBj=Bi
39 38 eqeq1d j=iBj=+∞Bi=+∞
40 34 oveq1d j=ifj+1=fi+1
41 39 40 38 ifbieq12d j=iifBj=+∞fj+1Bj=ifBi=+∞fi+1Bi
42 41 cbvmptv jXifBj=+∞fj+1Bj=iXifBi=+∞fi+1Bi
43 eqid iXjXifAj=−∞fj1AjijXifBj=+∞fj+1Bji=iXjXifAj=−∞fj1AjijXifBj=+∞fj+1Bji
44 27 28 29 31 37 42 43 ioorrnopnxrlem φXfjXAjBjvTopOpenmsupfvviXAiBi
45 26 44 syldan φXfiXAiBivTopOpenmsupfvviXAiBi
46 45 ralrimiva φXfiXAiBivTopOpenmsupfvviXAiBi
47 eqid TopOpenmsup=TopOpenmsup
48 47 rrxtop XFinTopOpenmsupTop
49 1 48 syl φTopOpenmsupTop
50 49 adantr φXTopOpenmsupTop
51 eltop2 TopOpenmsupTopiXAiBiTopOpenmsupfiXAiBivTopOpenmsupfvviXAiBi
52 50 51 syl φXiXAiBiTopOpenmsupfiXAiBivTopOpenmsupfvviXAiBi
53 46 52 mpbird φXiXAiBiTopOpenmsup
54 19 53 syldan φ¬X=iXAiBiTopOpenmsup
55 17 54 pm2.61dan φiXAiBiTopOpenmsup