Step |
Hyp |
Ref |
Expression |
1 |
|
ioorrnopnxr.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ioorrnopnxr.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ* ) |
3 |
|
ioorrnopnxr.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ* ) |
4 |
|
p0ex |
⊢ { ∅ } ∈ V |
5 |
4
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
6 |
5
|
a1i |
⊢ ( 𝑋 = ∅ → { ∅ } ∈ { ∅ , { ∅ } } ) |
7 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
8 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } |
9 |
8
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
11 |
|
2fveq3 |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) ) |
12 |
|
rrxtopn0b |
⊢ ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = { ∅ , { ∅ } } |
13 |
12
|
a1i |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ ∅ ) ) = { ∅ , { ∅ } } ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝑋 = ∅ → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = { ∅ , { ∅ } } ) |
15 |
10 14
|
eleq12d |
⊢ ( 𝑋 = ∅ → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ { ∅ } ∈ { ∅ , { ∅ } } ) ) |
16 |
6 15
|
mpbird |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
18 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
20 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐴 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑗 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 𝑗 ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
23 |
22
|
cbvixpv |
⊢ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) = X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) |
24 |
23
|
eleq2i |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ↔ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
25 |
24
|
biimpi |
⊢ ( 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) |
27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝑋 ∈ Fin ) |
28 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝐴 : 𝑋 ⟶ ℝ* ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝐵 : 𝑋 ⟶ ℝ* ) |
30 |
24
|
biimpri |
⊢ ( 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑖 ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐴 ‘ 𝑗 ) = -∞ ↔ ( 𝐴 ‘ 𝑖 ) = -∞ ) ) |
34 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑖 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑓 ‘ 𝑗 ) − 1 ) = ( ( 𝑓 ‘ 𝑖 ) − 1 ) ) |
36 |
33 35 32
|
ifbieq12d |
⊢ ( 𝑗 = 𝑖 → if ( ( 𝐴 ‘ 𝑗 ) = -∞ , ( ( 𝑓 ‘ 𝑗 ) − 1 ) , ( 𝐴 ‘ 𝑗 ) ) = if ( ( 𝐴 ‘ 𝑖 ) = -∞ , ( ( 𝑓 ‘ 𝑖 ) − 1 ) , ( 𝐴 ‘ 𝑖 ) ) ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐴 ‘ 𝑗 ) = -∞ , ( ( 𝑓 ‘ 𝑗 ) − 1 ) , ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑋 ↦ if ( ( 𝐴 ‘ 𝑖 ) = -∞ , ( ( 𝑓 ‘ 𝑖 ) − 1 ) , ( 𝐴 ‘ 𝑖 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑖 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝐵 ‘ 𝑗 ) = +∞ ↔ ( 𝐵 ‘ 𝑖 ) = +∞ ) ) |
40 |
34
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑓 ‘ 𝑗 ) + 1 ) = ( ( 𝑓 ‘ 𝑖 ) + 1 ) ) |
41 |
39 40 38
|
ifbieq12d |
⊢ ( 𝑗 = 𝑖 → if ( ( 𝐵 ‘ 𝑗 ) = +∞ , ( ( 𝑓 ‘ 𝑗 ) + 1 ) , ( 𝐵 ‘ 𝑗 ) ) = if ( ( 𝐵 ‘ 𝑖 ) = +∞ , ( ( 𝑓 ‘ 𝑖 ) + 1 ) , ( 𝐵 ‘ 𝑖 ) ) ) |
42 |
41
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐵 ‘ 𝑗 ) = +∞ , ( ( 𝑓 ‘ 𝑗 ) + 1 ) , ( 𝐵 ‘ 𝑗 ) ) ) = ( 𝑖 ∈ 𝑋 ↦ if ( ( 𝐵 ‘ 𝑖 ) = +∞ , ( ( 𝑓 ‘ 𝑖 ) + 1 ) , ( 𝐵 ‘ 𝑖 ) ) ) |
43 |
|
eqid |
⊢ X 𝑖 ∈ 𝑋 ( ( ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐴 ‘ 𝑗 ) = -∞ , ( ( 𝑓 ‘ 𝑗 ) − 1 ) , ( 𝐴 ‘ 𝑗 ) ) ) ‘ 𝑖 ) (,) ( ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐵 ‘ 𝑗 ) = +∞ , ( ( 𝑓 ‘ 𝑗 ) + 1 ) , ( 𝐵 ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) = X 𝑖 ∈ 𝑋 ( ( ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐴 ‘ 𝑗 ) = -∞ , ( ( 𝑓 ‘ 𝑗 ) − 1 ) , ( 𝐴 ‘ 𝑗 ) ) ) ‘ 𝑖 ) (,) ( ( 𝑗 ∈ 𝑋 ↦ if ( ( 𝐵 ‘ 𝑗 ) = +∞ , ( ( 𝑓 ‘ 𝑗 ) + 1 ) , ( 𝐵 ‘ 𝑗 ) ) ) ‘ 𝑖 ) ) |
44 |
27 28 29 31 37 42 43
|
ioorrnopnxrlem |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑗 ∈ 𝑋 ( ( 𝐴 ‘ 𝑗 ) (,) ( 𝐵 ‘ 𝑗 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
45 |
26 44
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) → ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |
47 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) |
48 |
47
|
rrxtop |
⊢ ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
49 |
1 48
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top ) |
51 |
|
eltop2 |
⊢ ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ Top → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ↔ ∀ 𝑓 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∃ 𝑣 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝑓 ∈ 𝑣 ∧ 𝑣 ⊆ X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
53 |
46 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
54 |
19 53
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
55 |
17 54
|
pm2.61dan |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |