| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopnxrlem.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | ioorrnopnxrlem.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ* ) | 
						
							| 3 |  | ioorrnopnxrlem.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ* ) | 
						
							| 4 |  | ioorrnopnxrlem.f | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 5 |  | ioorrnopnxrlem.l | ⊢ 𝐿  =  ( 𝑖  ∈  𝑋  ↦  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 6 |  | ioorrnopnxrlem.r | ⊢ 𝑅  =  ( 𝑖  ∈  𝑋  ↦  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 7 |  | ioorrnopnxrlem.v | ⊢ 𝑉  =  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  𝑉  =  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 9 |  | iftrue | ⊢ ( ( 𝐴 ‘ 𝑖 )  =  -∞  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  𝑖  ∈  𝑋 ) | 
						
							| 13 |  | fvixp2 | ⊢ ( ( 𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 15 | 14 | elioored | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 16 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  1  ∈  ℝ ) | 
						
							| 17 | 15 16 | resubcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  1 )  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( ( 𝐹 ‘ 𝑖 )  −  1 )  ∈  ℝ ) | 
						
							| 19 | 10 18 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 20 |  | iffalse | ⊢ ( ¬  ( 𝐴 ‘ 𝑖 )  =  -∞  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 22 |  | neqne | ⊢ ( ¬  ( 𝐴 ‘ 𝑖 )  =  -∞  →  ( 𝐴 ‘ 𝑖 )  ≠  -∞ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ≠  -∞ ) | 
						
							| 24 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  ≠  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  ≠  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ≠  -∞ ) | 
						
							| 27 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  +∞  ∈  ℝ* ) | 
						
							| 29 | 15 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 30 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 31 |  | ioogtlb | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 32 | 24 30 14 31 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 33 | 15 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  <  +∞ ) | 
						
							| 34 | 24 29 28 32 33 | xrlttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  <  +∞ ) | 
						
							| 35 | 24 28 34 | xrltned | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ≠  +∞ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  ≠  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ≠  +∞ ) | 
						
							| 37 | 25 26 36 | xrred | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  ≠  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 38 | 23 37 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 39 | 21 38 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 40 | 19 39 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 41 | 40 5 | fmptd | ⊢ ( 𝜑  →  𝐿 : 𝑋 ⟶ ℝ ) | 
						
							| 42 |  | iftrue | ⊢ ( ( 𝐵 ‘ 𝑖 )  =  +∞  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  =  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ) | 
						
							| 44 | 15 16 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  +  1 )  ∈  ℝ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( ( 𝐹 ‘ 𝑖 )  +  1 )  ∈  ℝ ) | 
						
							| 46 | 43 45 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 47 |  | iffalse | ⊢ ( ¬  ( 𝐵 ‘ 𝑖 )  =  +∞  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 49 |  | neqne | ⊢ ( ¬  ( 𝐵 ‘ 𝑖 )  =  +∞  →  ( 𝐵 ‘ 𝑖 )  ≠  +∞ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ≠  +∞ ) | 
						
							| 51 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  ≠  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 52 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  -∞  ∈  ℝ* ) | 
						
							| 54 | 15 | mnfltd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  -∞  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 55 |  | iooltub | ⊢ ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 56 | 24 30 14 55 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 57 | 53 29 30 54 56 | xrlttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  -∞  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 58 | 53 30 57 | xrgtned | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑖 )  ≠  -∞ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  ≠  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ≠  -∞ ) | 
						
							| 60 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  ≠  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ≠  +∞ ) | 
						
							| 61 | 51 59 60 | xrred | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  ≠  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 62 | 50 61 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 63 | 48 62 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 64 | 46 63 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 65 | 64 6 | fmptd | ⊢ ( 𝜑  →  𝑅 : 𝑋 ⟶ ℝ ) | 
						
							| 66 | 1 41 65 | ioorrnopn | ⊢ ( 𝜑  →  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 67 | 8 66 | eqeltrd | ⊢ ( 𝜑  →  𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 68 | 4 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 69 |  | ixpfn | ⊢ ( 𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  →  𝐹  Fn  𝑋 ) | 
						
							| 70 | 4 69 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 71 | 41 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐿 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 72 | 71 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐿 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 73 | 65 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑅 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 74 | 73 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑅 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 75 | 5 | a1i | ⊢ ( 𝜑  →  𝐿  =  ( 𝑖  ∈  𝑋  ↦  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) ) | 
						
							| 76 | 40 | elexd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) )  ∈  V ) | 
						
							| 77 | 75 76 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐿 ‘ 𝑖 )  =  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  =  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 79 | 78 10 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ) | 
						
							| 80 | 15 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑖 )  −  1 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( ( 𝐹 ‘ 𝑖 )  −  1 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 82 | 79 81 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 83 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  =  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 84 | 83 21 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 85 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 86 | 84 85 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 87 | 82 86 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐿 ‘ 𝑖 )  <  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 88 | 15 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  <  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐹 ‘ 𝑖 )  <  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ) | 
						
							| 90 | 6 | a1i | ⊢ ( 𝜑  →  𝑅  =  ( 𝑖  ∈  𝑋  ↦  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 91 | 64 | elexd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) )  ∈  V ) | 
						
							| 92 | 90 91 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑅 ‘ 𝑖 )  =  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  =  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 94 | 93 43 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ) | 
						
							| 95 | 94 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( ( 𝐹 ‘ 𝑖 )  +  1 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 96 | 89 95 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 97 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 98 | 92 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  =  if ( ( 𝐵 ‘ 𝑖 )  =  +∞ ,  ( ( 𝐹 ‘ 𝑖 )  +  1 ) ,  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 99 | 98 48 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 100 | 99 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 101 | 97 100 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 102 | 96 101 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  <  ( 𝑅 ‘ 𝑖 ) ) | 
						
							| 103 | 72 74 15 87 102 | eliood | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 104 | 103 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 105 | 68 70 104 | 3jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) ) | 
						
							| 106 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑖  ∈  𝑋 ( 𝐹 ‘ 𝑖 )  ∈  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) ) ) | 
						
							| 108 | 107 7 | eleqtrrdi | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 109 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 110 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐿 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 111 | 19 | mnfltd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  -∞  <  if ( ( 𝐴 ‘ 𝑖 )  =  -∞ ,  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ,  ( 𝐴 ‘ 𝑖 ) ) ) | 
						
							| 112 | 111 10 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  -∞  <  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ) | 
						
							| 113 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  =  -∞ ) | 
						
							| 114 | 113 79 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( ( 𝐴 ‘ 𝑖 )  <  ( 𝐿 ‘ 𝑖 )  ↔  -∞  <  ( ( 𝐹 ‘ 𝑖 )  −  1 ) ) ) | 
						
							| 115 | 112 114 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  <  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 116 | 109 110 115 | xrltled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ≤  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 117 | 84 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 118 | 38 117 | eqled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐴 ‘ 𝑖 )  =  -∞ )  →  ( 𝐴 ‘ 𝑖 )  ≤  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 119 | 116 118 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑖 )  ≤  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 120 | 74 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 121 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 122 | 45 | ltpnfd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( ( 𝐹 ‘ 𝑖 )  +  1 )  <  +∞ ) | 
						
							| 123 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝐵 ‘ 𝑖 )  =  +∞ ) | 
						
							| 124 | 94 123 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( ( 𝑅 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 )  ↔  ( ( 𝐹 ‘ 𝑖 )  +  1 )  <  +∞ ) ) | 
						
							| 125 | 122 124 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  <  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 126 | 120 121 125 | xrltled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 127 | 73 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 128 | 127 99 | eqled | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  ∧  ¬  ( 𝐵 ‘ 𝑖 )  =  +∞ )  →  ( 𝑅 ‘ 𝑖 )  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 129 | 126 128 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( 𝑅 ‘ 𝑖 )  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 130 |  | ioossioo | ⊢ ( ( ( ( 𝐴 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑖 )  ∈  ℝ* )  ∧  ( ( 𝐴 ‘ 𝑖 )  ≤  ( 𝐿 ‘ 𝑖 )  ∧  ( 𝑅 ‘ 𝑖 )  ≤  ( 𝐵 ‘ 𝑖 ) ) )  →  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 131 | 24 30 119 129 130 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑋 )  →  ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 132 | 131 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 133 |  | ss2ixp | ⊢ ( ∀ 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  →  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 134 | 132 133 | syl | ⊢ ( 𝜑  →  X 𝑖  ∈  𝑋 ( ( 𝐿 ‘ 𝑖 ) (,) ( 𝑅 ‘ 𝑖 ) )  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 135 | 8 134 | eqsstrd | ⊢ ( 𝜑  →  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 136 | 108 135 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 137 |  | eleq2 | ⊢ ( 𝑣  =  𝑉  →  ( 𝐹  ∈  𝑣  ↔  𝐹  ∈  𝑉 ) ) | 
						
							| 138 |  | sseq1 | ⊢ ( 𝑣  =  𝑉  →  ( 𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) )  ↔  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 139 | 137 138 | anbi12d | ⊢ ( 𝑣  =  𝑉  →  ( ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) )  ↔  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) ) | 
						
							| 140 | 139 | rspcev | ⊢ ( ( 𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∧  ( 𝐹  ∈  𝑉  ∧  𝑉  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) )  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) | 
						
							| 141 | 67 136 140 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ( 𝐹  ∈  𝑣  ∧  𝑣  ⊆  X 𝑖  ∈  𝑋 ( ( 𝐴 ‘ 𝑖 ) (,) ( 𝐵 ‘ 𝑖 ) ) ) ) |