| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioorrnopnlem.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
ioorrnopnlem.n |
|- ( ph -> X =/= (/) ) |
| 3 |
|
ioorrnopnlem.a |
|- ( ph -> A : X --> RR ) |
| 4 |
|
ioorrnopnlem.b |
|- ( ph -> B : X --> RR ) |
| 5 |
|
ioorrnopnlem.f |
|- ( ph -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 6 |
|
ioorrnopnlem.h |
|- H = ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) |
| 7 |
|
ioorrnopnlem.e |
|- E = inf ( H , RR , < ) |
| 8 |
|
ioorrnopnlem.v |
|- V = ( F ( ball ` D ) E ) |
| 9 |
|
ioorrnopnlem.d |
|- D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
| 10 |
1 9
|
rrndsxmet |
|- ( ph -> D e. ( *Met ` ( RR ^m X ) ) ) |
| 11 |
|
nfv |
|- F/ i ph |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
12
|
a1i |
|- ( ph -> RR e. _V ) |
| 14 |
|
ioossre |
|- ( ( A ` i ) (,) ( B ` i ) ) C_ RR |
| 15 |
14
|
a1i |
|- ( ( ph /\ i e. X ) -> ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) |
| 16 |
11 13 15
|
ixpssmapc |
|- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ ( RR ^m X ) ) |
| 17 |
16 5
|
sseldd |
|- ( ph -> F e. ( RR ^m X ) ) |
| 18 |
6
|
a1i |
|- ( ph -> H = ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) |
| 19 |
4
|
ffvelcdmda |
|- ( ( ph /\ i e. X ) -> ( B ` i ) e. RR ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ i e. X ) -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 21 |
|
simpr |
|- ( ( ph /\ i e. X ) -> i e. X ) |
| 22 |
|
fvixp2 |
|- ( ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
| 23 |
20 21 22
|
syl2anc |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
| 24 |
14 23
|
sselid |
|- ( ( ph /\ i e. X ) -> ( F ` i ) e. RR ) |
| 25 |
19 24
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( B ` i ) - ( F ` i ) ) e. RR ) |
| 26 |
3
|
ffvelcdmda |
|- ( ( ph /\ i e. X ) -> ( A ` i ) e. RR ) |
| 27 |
26
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( A ` i ) e. RR* ) |
| 28 |
19
|
rexrd |
|- ( ( ph /\ i e. X ) -> ( B ` i ) e. RR* ) |
| 29 |
|
iooltub |
|- ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( F ` i ) < ( B ` i ) ) |
| 30 |
27 28 23 29
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( F ` i ) < ( B ` i ) ) |
| 31 |
24 19
|
posdifd |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) < ( B ` i ) <-> 0 < ( ( B ` i ) - ( F ` i ) ) ) ) |
| 32 |
30 31
|
mpbid |
|- ( ( ph /\ i e. X ) -> 0 < ( ( B ` i ) - ( F ` i ) ) ) |
| 33 |
25 32
|
elrpd |
|- ( ( ph /\ i e. X ) -> ( ( B ` i ) - ( F ` i ) ) e. RR+ ) |
| 34 |
24 26
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) - ( A ` i ) ) e. RR ) |
| 35 |
|
ioogtlb |
|- ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( A ` i ) < ( F ` i ) ) |
| 36 |
27 28 23 35
|
syl3anc |
|- ( ( ph /\ i e. X ) -> ( A ` i ) < ( F ` i ) ) |
| 37 |
26 24
|
posdifd |
|- ( ( ph /\ i e. X ) -> ( ( A ` i ) < ( F ` i ) <-> 0 < ( ( F ` i ) - ( A ` i ) ) ) ) |
| 38 |
36 37
|
mpbid |
|- ( ( ph /\ i e. X ) -> 0 < ( ( F ` i ) - ( A ` i ) ) ) |
| 39 |
34 38
|
elrpd |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) - ( A ` i ) ) e. RR+ ) |
| 40 |
33 39
|
ifcld |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ ) |
| 41 |
40
|
ralrimiva |
|- ( ph -> A. i e. X if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ ) |
| 42 |
|
eqid |
|- ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) = ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) |
| 43 |
42
|
rnmptss |
|- ( A. i e. X if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) C_ RR+ ) |
| 44 |
41 43
|
syl |
|- ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) C_ RR+ ) |
| 45 |
18 44
|
eqsstrd |
|- ( ph -> H C_ RR+ ) |
| 46 |
|
ltso |
|- < Or RR |
| 47 |
46
|
a1i |
|- ( ph -> < Or RR ) |
| 48 |
42
|
rnmptfi |
|- ( X e. Fin -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) e. Fin ) |
| 49 |
1 48
|
syl |
|- ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) e. Fin ) |
| 50 |
6 49
|
eqeltrid |
|- ( ph -> H e. Fin ) |
| 51 |
11 40 42 2
|
rnmptn0 |
|- ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) =/= (/) ) |
| 52 |
18 51
|
eqnetrd |
|- ( ph -> H =/= (/) ) |
| 53 |
|
rpssre |
|- RR+ C_ RR |
| 54 |
53
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 55 |
45 54
|
sstrd |
|- ( ph -> H C_ RR ) |
| 56 |
|
fiinfcl |
|- ( ( < Or RR /\ ( H e. Fin /\ H =/= (/) /\ H C_ RR ) ) -> inf ( H , RR , < ) e. H ) |
| 57 |
47 50 52 55 56
|
syl13anc |
|- ( ph -> inf ( H , RR , < ) e. H ) |
| 58 |
45 57
|
sseldd |
|- ( ph -> inf ( H , RR , < ) e. RR+ ) |
| 59 |
7 58
|
eqeltrid |
|- ( ph -> E e. RR+ ) |
| 60 |
|
rpxr |
|- ( E e. RR+ -> E e. RR* ) |
| 61 |
59 60
|
syl |
|- ( ph -> E e. RR* ) |
| 62 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 63 |
62
|
blopn |
|- ( ( D e. ( *Met ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ E e. RR* ) -> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) |
| 64 |
10 17 61 63
|
syl3anc |
|- ( ph -> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) |
| 65 |
8
|
a1i |
|- ( ph -> V = ( F ( ball ` D ) E ) ) |
| 66 |
1
|
rrxtopnfi |
|- ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( MetOpen ` ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
| 67 |
9
|
eqcomi |
|- ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D |
| 68 |
67
|
a1i |
|- ( ph -> ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D ) |
| 69 |
68
|
fveq2d |
|- ( ph -> ( MetOpen ` ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) = ( MetOpen ` D ) ) |
| 70 |
66 69
|
eqtrd |
|- ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( MetOpen ` D ) ) |
| 71 |
65 70
|
eleq12d |
|- ( ph -> ( V e. ( TopOpen ` ( RR^ ` X ) ) <-> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) ) |
| 72 |
64 71
|
mpbird |
|- ( ph -> V e. ( TopOpen ` ( RR^ ` X ) ) ) |
| 73 |
|
xmetpsmet |
|- ( D e. ( *Met ` ( RR ^m X ) ) -> D e. ( PsMet ` ( RR ^m X ) ) ) |
| 74 |
10 73
|
syl |
|- ( ph -> D e. ( PsMet ` ( RR ^m X ) ) ) |
| 75 |
|
blcntrps |
|- ( ( D e. ( PsMet ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ E e. RR+ ) -> F e. ( F ( ball ` D ) E ) ) |
| 76 |
74 17 59 75
|
syl3anc |
|- ( ph -> F e. ( F ( ball ` D ) E ) ) |
| 77 |
65
|
eqcomd |
|- ( ph -> ( F ( ball ` D ) E ) = V ) |
| 78 |
76 77
|
eleqtrd |
|- ( ph -> F e. V ) |
| 79 |
|
nfv |
|- F/ g ph |
| 80 |
|
elmapfn |
|- ( g e. ( RR ^m X ) -> g Fn X ) |
| 81 |
80
|
3ad2ant2 |
|- ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> g Fn X ) |
| 82 |
27
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) e. RR* ) |
| 83 |
28
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( B ` i ) e. RR* ) |
| 84 |
|
simpl2 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> g e. ( RR ^m X ) ) |
| 85 |
|
simpr |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> i e. X ) |
| 86 |
|
elmapi |
|- ( g e. ( RR ^m X ) -> g : X --> RR ) |
| 87 |
86
|
adantr |
|- ( ( g e. ( RR ^m X ) /\ i e. X ) -> g : X --> RR ) |
| 88 |
|
simpr |
|- ( ( g e. ( RR ^m X ) /\ i e. X ) -> i e. X ) |
| 89 |
87 88
|
ffvelcdmd |
|- ( ( g e. ( RR ^m X ) /\ i e. X ) -> ( g ` i ) e. RR ) |
| 90 |
84 85 89
|
syl2anc |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) e. RR ) |
| 91 |
26
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) e. RR ) |
| 92 |
53 59
|
sselid |
|- ( ph -> E e. RR ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ i e. X ) -> E e. RR ) |
| 94 |
24 93
|
resubcld |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) - E ) e. RR ) |
| 95 |
94
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - E ) e. RR ) |
| 96 |
53 40
|
sselid |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR ) |
| 97 |
7
|
a1i |
|- ( ph -> E = inf ( H , RR , < ) ) |
| 98 |
|
infxrrefi |
|- ( ( H C_ RR /\ H e. Fin /\ H =/= (/) ) -> inf ( H , RR* , < ) = inf ( H , RR , < ) ) |
| 99 |
55 50 52 98
|
syl3anc |
|- ( ph -> inf ( H , RR* , < ) = inf ( H , RR , < ) ) |
| 100 |
99
|
eqcomd |
|- ( ph -> inf ( H , RR , < ) = inf ( H , RR* , < ) ) |
| 101 |
97 100
|
eqtrd |
|- ( ph -> E = inf ( H , RR* , < ) ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ i e. X ) -> E = inf ( H , RR* , < ) ) |
| 103 |
|
ressxr |
|- RR C_ RR* |
| 104 |
103
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 105 |
55 104
|
sstrd |
|- ( ph -> H C_ RR* ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ i e. X ) -> H C_ RR* ) |
| 107 |
40
|
elexd |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. _V ) |
| 108 |
42
|
elrnmpt1 |
|- ( ( i e. X /\ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. _V ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) |
| 109 |
21 107 108
|
syl2anc |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) |
| 110 |
109 6
|
eleqtrrdi |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. H ) |
| 111 |
|
infxrlb |
|- ( ( H C_ RR* /\ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. H ) -> inf ( H , RR* , < ) <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) |
| 112 |
106 110 111
|
syl2anc |
|- ( ( ph /\ i e. X ) -> inf ( H , RR* , < ) <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) |
| 113 |
102 112
|
eqbrtrd |
|- ( ( ph /\ i e. X ) -> E <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) |
| 114 |
|
min2 |
|- ( ( ( ( B ` i ) - ( F ` i ) ) e. RR /\ ( ( F ` i ) - ( A ` i ) ) e. RR ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( F ` i ) - ( A ` i ) ) ) |
| 115 |
25 34 114
|
syl2anc |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( F ` i ) - ( A ` i ) ) ) |
| 116 |
93 96 34 113 115
|
letrd |
|- ( ( ph /\ i e. X ) -> E <_ ( ( F ` i ) - ( A ` i ) ) ) |
| 117 |
93 24 26 116
|
lesubd |
|- ( ( ph /\ i e. X ) -> ( A ` i ) <_ ( ( F ` i ) - E ) ) |
| 118 |
117
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) <_ ( ( F ` i ) - E ) ) |
| 119 |
24
|
adantlr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ` i ) e. RR ) |
| 120 |
89
|
adantll |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( g ` i ) e. RR ) |
| 121 |
119 120
|
resubcld |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. RR ) |
| 122 |
121
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. RR ) |
| 123 |
1 9
|
rrndsmet |
|- ( ph -> D e. ( Met ` ( RR ^m X ) ) ) |
| 124 |
123
|
ad2antrr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> D e. ( Met ` ( RR ^m X ) ) ) |
| 125 |
17
|
ad2antrr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> F e. ( RR ^m X ) ) |
| 126 |
|
simplr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> g e. ( RR ^m X ) ) |
| 127 |
|
metcl |
|- ( ( D e. ( Met ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ g e. ( RR ^m X ) ) -> ( F D g ) e. RR ) |
| 128 |
124 125 126 127
|
syl3anc |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F D g ) e. RR ) |
| 129 |
128
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F D g ) e. RR ) |
| 130 |
93
|
adantlr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> E e. RR ) |
| 131 |
130
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> E e. RR ) |
| 132 |
121
|
recnd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. CC ) |
| 133 |
132
|
abscld |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) e. RR ) |
| 134 |
121
|
leabsd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) |
| 135 |
1
|
ad2antrr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> X e. Fin ) |
| 136 |
|
ixpf |
|- ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> F : X --> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 137 |
5 136
|
syl |
|- ( ph -> F : X --> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 138 |
15
|
ralrimiva |
|- ( ph -> A. i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) |
| 139 |
|
iunss |
|- ( U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR <-> A. i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) |
| 140 |
138 139
|
sylibr |
|- ( ph -> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) |
| 141 |
137 140
|
fssd |
|- ( ph -> F : X --> RR ) |
| 142 |
141
|
ad2antrr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> F : X --> RR ) |
| 143 |
126 86
|
syl |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> g : X --> RR ) |
| 144 |
|
simpr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> i e. X ) |
| 145 |
|
eqid |
|- ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) |
| 146 |
135 142 143 144 145
|
rrnprjdstle |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) <_ ( F ( dist ` ( RR^ ` X ) ) g ) ) |
| 147 |
|
eqid |
|- ( RR^ ` X ) = ( RR^ ` X ) |
| 148 |
|
eqid |
|- ( RR ^m X ) = ( RR ^m X ) |
| 149 |
147 148
|
rrxdsfi |
|- ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 150 |
1 149
|
syl |
|- ( ph -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
| 151 |
150 68
|
eqtrd |
|- ( ph -> ( dist ` ( RR^ ` X ) ) = D ) |
| 152 |
151
|
oveqd |
|- ( ph -> ( F ( dist ` ( RR^ ` X ) ) g ) = ( F D g ) ) |
| 153 |
152
|
ad2antrr |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ( dist ` ( RR^ ` X ) ) g ) = ( F D g ) ) |
| 154 |
146 153
|
breqtrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) <_ ( F D g ) ) |
| 155 |
121 133 128 134 154
|
letrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( F D g ) ) |
| 156 |
155
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( F D g ) ) |
| 157 |
|
simpl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F D g ) < E ) |
| 158 |
122 129 131 156 157
|
lelttrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) < E ) |
| 159 |
|
ltsub23 |
|- ( ( ( F ` i ) e. RR /\ ( g ` i ) e. RR /\ E e. RR ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) |
| 160 |
119 120 130 159
|
syl3anc |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) |
| 161 |
160
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) |
| 162 |
158 161
|
mpbid |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - E ) < ( g ` i ) ) |
| 163 |
91 95 90 118 162
|
lelttrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) < ( g ` i ) ) |
| 164 |
24 93
|
readdcld |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) + E ) e. RR ) |
| 165 |
164
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) + E ) e. RR ) |
| 166 |
19
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( B ` i ) e. RR ) |
| 167 |
120 119
|
resubcld |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) e. RR ) |
| 168 |
167
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) e. RR ) |
| 169 |
167
|
leabsd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( abs ` ( ( g ` i ) - ( F ` i ) ) ) ) |
| 170 |
120
|
recnd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( g ` i ) e. CC ) |
| 171 |
119
|
recnd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ` i ) e. CC ) |
| 172 |
170 171
|
abssubd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( g ` i ) - ( F ` i ) ) ) = ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) |
| 173 |
169 172
|
breqtrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) |
| 174 |
167 133 128 173 154
|
letrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( F D g ) ) |
| 175 |
174
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( F D g ) ) |
| 176 |
168 129 131 175 157
|
lelttrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) < E ) |
| 177 |
119
|
3adantl3 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F ` i ) e. RR ) |
| 178 |
90 177 131
|
ltsubadd2d |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( ( g ` i ) - ( F ` i ) ) < E <-> ( g ` i ) < ( ( F ` i ) + E ) ) ) |
| 179 |
176 178
|
mpbid |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) < ( ( F ` i ) + E ) ) |
| 180 |
|
min1 |
|- ( ( ( ( B ` i ) - ( F ` i ) ) e. RR /\ ( ( F ` i ) - ( A ` i ) ) e. RR ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( B ` i ) - ( F ` i ) ) ) |
| 181 |
25 34 180
|
syl2anc |
|- ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( B ` i ) - ( F ` i ) ) ) |
| 182 |
93 96 25 113 181
|
letrd |
|- ( ( ph /\ i e. X ) -> E <_ ( ( B ` i ) - ( F ` i ) ) ) |
| 183 |
24 93 19
|
leaddsub2d |
|- ( ( ph /\ i e. X ) -> ( ( ( F ` i ) + E ) <_ ( B ` i ) <-> E <_ ( ( B ` i ) - ( F ` i ) ) ) ) |
| 184 |
182 183
|
mpbird |
|- ( ( ph /\ i e. X ) -> ( ( F ` i ) + E ) <_ ( B ` i ) ) |
| 185 |
184
|
3ad2antl1 |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) + E ) <_ ( B ` i ) ) |
| 186 |
90 165 166 179 185
|
ltletrd |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) < ( B ` i ) ) |
| 187 |
82 83 90 163 186
|
eliood |
|- ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
| 188 |
187
|
ralrimiva |
|- ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) |
| 189 |
81 188
|
jca |
|- ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> ( g Fn X /\ A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) ) |
| 190 |
|
vex |
|- g e. _V |
| 191 |
190
|
elixp |
|- ( g e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> ( g Fn X /\ A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) ) |
| 192 |
189 191
|
sylibr |
|- ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> g e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 193 |
79 74 17 61 192
|
ballss3 |
|- ( ph -> ( F ( ball ` D ) E ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 194 |
65 193
|
eqsstrd |
|- ( ph -> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) |
| 195 |
78 194
|
jca |
|- ( ph -> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
| 196 |
|
eleq2 |
|- ( v = V -> ( F e. v <-> F e. V ) ) |
| 197 |
|
sseq1 |
|- ( v = V -> ( v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
| 198 |
196 197
|
anbi12d |
|- ( v = V -> ( ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) <-> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) |
| 199 |
198
|
rspcev |
|- ( ( V e. ( TopOpen ` ( RR^ ` X ) ) /\ ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |
| 200 |
72 195 199
|
syl2anc |
|- ( ph -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |