| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioorrnopnlem.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | ioorrnopnlem.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 3 |  | ioorrnopnlem.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 4 |  | ioorrnopnlem.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 5 |  | ioorrnopnlem.f |  |-  ( ph -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 6 |  | ioorrnopnlem.h |  |-  H = ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 7 |  | ioorrnopnlem.e |  |-  E = inf ( H , RR , < ) | 
						
							| 8 |  | ioorrnopnlem.v |  |-  V = ( F ( ball ` D ) E ) | 
						
							| 9 |  | ioorrnopnlem.d |  |-  D = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) | 
						
							| 10 | 1 9 | rrndsxmet |  |-  ( ph -> D e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 11 |  | nfv |  |-  F/ i ph | 
						
							| 12 |  | reex |  |-  RR e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 14 |  | ioossre |  |-  ( ( A ` i ) (,) ( B ` i ) ) C_ RR | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ i e. X ) -> ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) | 
						
							| 16 | 11 13 15 | ixpssmapc |  |-  ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ ( RR ^m X ) ) | 
						
							| 17 | 16 5 | sseldd |  |-  ( ph -> F e. ( RR ^m X ) ) | 
						
							| 18 | 6 | a1i |  |-  ( ph -> H = ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) | 
						
							| 19 | 4 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( B ` i ) e. RR ) | 
						
							| 20 | 5 | adantr |  |-  ( ( ph /\ i e. X ) -> F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ i e. X ) -> i e. X ) | 
						
							| 22 |  | fvixp2 |  |-  ( ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 24 | 14 23 | sselid |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) e. RR ) | 
						
							| 25 | 19 24 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( B ` i ) - ( F ` i ) ) e. RR ) | 
						
							| 26 | 3 | ffvelcdmda |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) e. RR ) | 
						
							| 27 | 26 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) e. RR* ) | 
						
							| 28 | 19 | rexrd |  |-  ( ( ph /\ i e. X ) -> ( B ` i ) e. RR* ) | 
						
							| 29 |  | iooltub |  |-  ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( F ` i ) < ( B ` i ) ) | 
						
							| 30 | 27 28 23 29 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( F ` i ) < ( B ` i ) ) | 
						
							| 31 | 24 19 | posdifd |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) < ( B ` i ) <-> 0 < ( ( B ` i ) - ( F ` i ) ) ) ) | 
						
							| 32 | 30 31 | mpbid |  |-  ( ( ph /\ i e. X ) -> 0 < ( ( B ` i ) - ( F ` i ) ) ) | 
						
							| 33 | 25 32 | elrpd |  |-  ( ( ph /\ i e. X ) -> ( ( B ` i ) - ( F ` i ) ) e. RR+ ) | 
						
							| 34 | 24 26 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) - ( A ` i ) ) e. RR ) | 
						
							| 35 |  | ioogtlb |  |-  ( ( ( A ` i ) e. RR* /\ ( B ` i ) e. RR* /\ ( F ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) -> ( A ` i ) < ( F ` i ) ) | 
						
							| 36 | 27 28 23 35 | syl3anc |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) < ( F ` i ) ) | 
						
							| 37 | 26 24 | posdifd |  |-  ( ( ph /\ i e. X ) -> ( ( A ` i ) < ( F ` i ) <-> 0 < ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 38 | 36 37 | mpbid |  |-  ( ( ph /\ i e. X ) -> 0 < ( ( F ` i ) - ( A ` i ) ) ) | 
						
							| 39 | 34 38 | elrpd |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) - ( A ` i ) ) e. RR+ ) | 
						
							| 40 | 33 39 | ifcld |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ph -> A. i e. X if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ ) | 
						
							| 42 |  | eqid |  |-  ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) = ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 43 | 42 | rnmptss |  |-  ( A. i e. X if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR+ -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) C_ RR+ ) | 
						
							| 44 | 41 43 | syl |  |-  ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) C_ RR+ ) | 
						
							| 45 | 18 44 | eqsstrd |  |-  ( ph -> H C_ RR+ ) | 
						
							| 46 |  | ltso |  |-  < Or RR | 
						
							| 47 | 46 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 48 | 42 | rnmptfi |  |-  ( X e. Fin -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) e. Fin ) | 
						
							| 49 | 1 48 | syl |  |-  ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) e. Fin ) | 
						
							| 50 | 6 49 | eqeltrid |  |-  ( ph -> H e. Fin ) | 
						
							| 51 | 11 40 42 2 | rnmptn0 |  |-  ( ph -> ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) =/= (/) ) | 
						
							| 52 | 18 51 | eqnetrd |  |-  ( ph -> H =/= (/) ) | 
						
							| 53 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 54 | 53 | a1i |  |-  ( ph -> RR+ C_ RR ) | 
						
							| 55 | 45 54 | sstrd |  |-  ( ph -> H C_ RR ) | 
						
							| 56 |  | fiinfcl |  |-  ( ( < Or RR /\ ( H e. Fin /\ H =/= (/) /\ H C_ RR ) ) -> inf ( H , RR , < ) e. H ) | 
						
							| 57 | 47 50 52 55 56 | syl13anc |  |-  ( ph -> inf ( H , RR , < ) e. H ) | 
						
							| 58 | 45 57 | sseldd |  |-  ( ph -> inf ( H , RR , < ) e. RR+ ) | 
						
							| 59 | 7 58 | eqeltrid |  |-  ( ph -> E e. RR+ ) | 
						
							| 60 |  | rpxr |  |-  ( E e. RR+ -> E e. RR* ) | 
						
							| 61 | 59 60 | syl |  |-  ( ph -> E e. RR* ) | 
						
							| 62 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 63 | 62 | blopn |  |-  ( ( D e. ( *Met ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ E e. RR* ) -> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) | 
						
							| 64 | 10 17 61 63 | syl3anc |  |-  ( ph -> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) | 
						
							| 65 | 8 | a1i |  |-  ( ph -> V = ( F ( ball ` D ) E ) ) | 
						
							| 66 | 1 | rrxtopnfi |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( MetOpen ` ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) | 
						
							| 67 | 9 | eqcomi |  |-  ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D | 
						
							| 68 | 67 | a1i |  |-  ( ph -> ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = D ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ph -> ( MetOpen ` ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) = ( MetOpen ` D ) ) | 
						
							| 70 | 66 69 | eqtrd |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( MetOpen ` D ) ) | 
						
							| 71 | 65 70 | eleq12d |  |-  ( ph -> ( V e. ( TopOpen ` ( RR^ ` X ) ) <-> ( F ( ball ` D ) E ) e. ( MetOpen ` D ) ) ) | 
						
							| 72 | 64 71 | mpbird |  |-  ( ph -> V e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 73 |  | xmetpsmet |  |-  ( D e. ( *Met ` ( RR ^m X ) ) -> D e. ( PsMet ` ( RR ^m X ) ) ) | 
						
							| 74 | 10 73 | syl |  |-  ( ph -> D e. ( PsMet ` ( RR ^m X ) ) ) | 
						
							| 75 |  | blcntrps |  |-  ( ( D e. ( PsMet ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ E e. RR+ ) -> F e. ( F ( ball ` D ) E ) ) | 
						
							| 76 | 74 17 59 75 | syl3anc |  |-  ( ph -> F e. ( F ( ball ` D ) E ) ) | 
						
							| 77 | 65 | eqcomd |  |-  ( ph -> ( F ( ball ` D ) E ) = V ) | 
						
							| 78 | 76 77 | eleqtrd |  |-  ( ph -> F e. V ) | 
						
							| 79 |  | nfv |  |-  F/ g ph | 
						
							| 80 |  | elmapfn |  |-  ( g e. ( RR ^m X ) -> g Fn X ) | 
						
							| 81 | 80 | 3ad2ant2 |  |-  ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> g Fn X ) | 
						
							| 82 | 27 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) e. RR* ) | 
						
							| 83 | 28 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( B ` i ) e. RR* ) | 
						
							| 84 |  | simpl2 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> g e. ( RR ^m X ) ) | 
						
							| 85 |  | simpr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> i e. X ) | 
						
							| 86 |  | elmapi |  |-  ( g e. ( RR ^m X ) -> g : X --> RR ) | 
						
							| 87 | 86 | adantr |  |-  ( ( g e. ( RR ^m X ) /\ i e. X ) -> g : X --> RR ) | 
						
							| 88 |  | simpr |  |-  ( ( g e. ( RR ^m X ) /\ i e. X ) -> i e. X ) | 
						
							| 89 | 87 88 | ffvelcdmd |  |-  ( ( g e. ( RR ^m X ) /\ i e. X ) -> ( g ` i ) e. RR ) | 
						
							| 90 | 84 85 89 | syl2anc |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) e. RR ) | 
						
							| 91 | 26 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) e. RR ) | 
						
							| 92 | 53 59 | sselid |  |-  ( ph -> E e. RR ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ i e. X ) -> E e. RR ) | 
						
							| 94 | 24 93 | resubcld |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) - E ) e. RR ) | 
						
							| 95 | 94 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - E ) e. RR ) | 
						
							| 96 | 53 40 | sselid |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. RR ) | 
						
							| 97 | 7 | a1i |  |-  ( ph -> E = inf ( H , RR , < ) ) | 
						
							| 98 |  | infxrrefi |  |-  ( ( H C_ RR /\ H e. Fin /\ H =/= (/) ) -> inf ( H , RR* , < ) = inf ( H , RR , < ) ) | 
						
							| 99 | 55 50 52 98 | syl3anc |  |-  ( ph -> inf ( H , RR* , < ) = inf ( H , RR , < ) ) | 
						
							| 100 | 99 | eqcomd |  |-  ( ph -> inf ( H , RR , < ) = inf ( H , RR* , < ) ) | 
						
							| 101 | 97 100 | eqtrd |  |-  ( ph -> E = inf ( H , RR* , < ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ph /\ i e. X ) -> E = inf ( H , RR* , < ) ) | 
						
							| 103 |  | ressxr |  |-  RR C_ RR* | 
						
							| 104 | 103 | a1i |  |-  ( ph -> RR C_ RR* ) | 
						
							| 105 | 55 104 | sstrd |  |-  ( ph -> H C_ RR* ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ i e. X ) -> H C_ RR* ) | 
						
							| 107 | 40 | elexd |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. _V ) | 
						
							| 108 | 42 | elrnmpt1 |  |-  ( ( i e. X /\ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. _V ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) | 
						
							| 109 | 21 107 108 | syl2anc |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. ran ( i e. X |-> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) ) | 
						
							| 110 | 109 6 | eleqtrrdi |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. H ) | 
						
							| 111 |  | infxrlb |  |-  ( ( H C_ RR* /\ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) e. H ) -> inf ( H , RR* , < ) <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 112 | 106 110 111 | syl2anc |  |-  ( ( ph /\ i e. X ) -> inf ( H , RR* , < ) <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 113 | 102 112 | eqbrtrd |  |-  ( ( ph /\ i e. X ) -> E <_ if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) ) | 
						
							| 114 |  | min2 |  |-  ( ( ( ( B ` i ) - ( F ` i ) ) e. RR /\ ( ( F ` i ) - ( A ` i ) ) e. RR ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( F ` i ) - ( A ` i ) ) ) | 
						
							| 115 | 25 34 114 | syl2anc |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( F ` i ) - ( A ` i ) ) ) | 
						
							| 116 | 93 96 34 113 115 | letrd |  |-  ( ( ph /\ i e. X ) -> E <_ ( ( F ` i ) - ( A ` i ) ) ) | 
						
							| 117 | 93 24 26 116 | lesubd |  |-  ( ( ph /\ i e. X ) -> ( A ` i ) <_ ( ( F ` i ) - E ) ) | 
						
							| 118 | 117 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) <_ ( ( F ` i ) - E ) ) | 
						
							| 119 | 24 | adantlr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ` i ) e. RR ) | 
						
							| 120 | 89 | adantll |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( g ` i ) e. RR ) | 
						
							| 121 | 119 120 | resubcld |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. RR ) | 
						
							| 122 | 121 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. RR ) | 
						
							| 123 | 1 9 | rrndsmet |  |-  ( ph -> D e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 124 | 123 | ad2antrr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> D e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 125 | 17 | ad2antrr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> F e. ( RR ^m X ) ) | 
						
							| 126 |  | simplr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> g e. ( RR ^m X ) ) | 
						
							| 127 |  | metcl |  |-  ( ( D e. ( Met ` ( RR ^m X ) ) /\ F e. ( RR ^m X ) /\ g e. ( RR ^m X ) ) -> ( F D g ) e. RR ) | 
						
							| 128 | 124 125 126 127 | syl3anc |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F D g ) e. RR ) | 
						
							| 129 | 128 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F D g ) e. RR ) | 
						
							| 130 | 93 | adantlr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> E e. RR ) | 
						
							| 131 | 130 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> E e. RR ) | 
						
							| 132 | 121 | recnd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) e. CC ) | 
						
							| 133 | 132 | abscld |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) e. RR ) | 
						
							| 134 | 121 | leabsd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) | 
						
							| 135 | 1 | ad2antrr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> X e. Fin ) | 
						
							| 136 |  | ixpf |  |-  ( F e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) -> F : X --> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 137 | 5 136 | syl |  |-  ( ph -> F : X --> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 138 | 15 | ralrimiva |  |-  ( ph -> A. i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) | 
						
							| 139 |  | iunss |  |-  ( U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR <-> A. i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) | 
						
							| 140 | 138 139 | sylibr |  |-  ( ph -> U_ i e. X ( ( A ` i ) (,) ( B ` i ) ) C_ RR ) | 
						
							| 141 | 137 140 | fssd |  |-  ( ph -> F : X --> RR ) | 
						
							| 142 | 141 | ad2antrr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> F : X --> RR ) | 
						
							| 143 | 126 86 | syl |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> g : X --> RR ) | 
						
							| 144 |  | simpr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> i e. X ) | 
						
							| 145 |  | eqid |  |-  ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) | 
						
							| 146 | 135 142 143 144 145 | rrnprjdstle |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) <_ ( F ( dist ` ( RR^ ` X ) ) g ) ) | 
						
							| 147 |  | eqid |  |-  ( RR^ ` X ) = ( RR^ ` X ) | 
						
							| 148 |  | eqid |  |-  ( RR ^m X ) = ( RR ^m X ) | 
						
							| 149 | 147 148 | rrxdsfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 150 | 1 149 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) = ( f e. ( RR ^m X ) , g e. ( RR ^m X ) |-> ( sqrt ` sum_ k e. X ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) | 
						
							| 151 | 150 68 | eqtrd |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) = D ) | 
						
							| 152 | 151 | oveqd |  |-  ( ph -> ( F ( dist ` ( RR^ ` X ) ) g ) = ( F D g ) ) | 
						
							| 153 | 152 | ad2antrr |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ( dist ` ( RR^ ` X ) ) g ) = ( F D g ) ) | 
						
							| 154 | 146 153 | breqtrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( F ` i ) - ( g ` i ) ) ) <_ ( F D g ) ) | 
						
							| 155 | 121 133 128 134 154 | letrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( F D g ) ) | 
						
							| 156 | 155 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) <_ ( F D g ) ) | 
						
							| 157 |  | simpl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F D g ) < E ) | 
						
							| 158 | 122 129 131 156 157 | lelttrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - ( g ` i ) ) < E ) | 
						
							| 159 |  | ltsub23 |  |-  ( ( ( F ` i ) e. RR /\ ( g ` i ) e. RR /\ E e. RR ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) | 
						
							| 160 | 119 120 130 159 | syl3anc |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) | 
						
							| 161 | 160 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( ( F ` i ) - ( g ` i ) ) < E <-> ( ( F ` i ) - E ) < ( g ` i ) ) ) | 
						
							| 162 | 158 161 | mpbid |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) - E ) < ( g ` i ) ) | 
						
							| 163 | 91 95 90 118 162 | lelttrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( A ` i ) < ( g ` i ) ) | 
						
							| 164 | 24 93 | readdcld |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) + E ) e. RR ) | 
						
							| 165 | 164 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) + E ) e. RR ) | 
						
							| 166 | 19 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( B ` i ) e. RR ) | 
						
							| 167 | 120 119 | resubcld |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) e. RR ) | 
						
							| 168 | 167 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) e. RR ) | 
						
							| 169 | 167 | leabsd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( abs ` ( ( g ` i ) - ( F ` i ) ) ) ) | 
						
							| 170 | 120 | recnd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( g ` i ) e. CC ) | 
						
							| 171 | 119 | recnd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( F ` i ) e. CC ) | 
						
							| 172 | 170 171 | abssubd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( abs ` ( ( g ` i ) - ( F ` i ) ) ) = ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) | 
						
							| 173 | 169 172 | breqtrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( abs ` ( ( F ` i ) - ( g ` i ) ) ) ) | 
						
							| 174 | 167 133 128 173 154 | letrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( F D g ) ) | 
						
							| 175 | 174 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) <_ ( F D g ) ) | 
						
							| 176 | 168 129 131 175 157 | lelttrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( g ` i ) - ( F ` i ) ) < E ) | 
						
							| 177 | 119 | 3adantl3 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( F ` i ) e. RR ) | 
						
							| 178 | 90 177 131 | ltsubadd2d |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( ( g ` i ) - ( F ` i ) ) < E <-> ( g ` i ) < ( ( F ` i ) + E ) ) ) | 
						
							| 179 | 176 178 | mpbid |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) < ( ( F ` i ) + E ) ) | 
						
							| 180 |  | min1 |  |-  ( ( ( ( B ` i ) - ( F ` i ) ) e. RR /\ ( ( F ` i ) - ( A ` i ) ) e. RR ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( B ` i ) - ( F ` i ) ) ) | 
						
							| 181 | 25 34 180 | syl2anc |  |-  ( ( ph /\ i e. X ) -> if ( ( ( B ` i ) - ( F ` i ) ) <_ ( ( F ` i ) - ( A ` i ) ) , ( ( B ` i ) - ( F ` i ) ) , ( ( F ` i ) - ( A ` i ) ) ) <_ ( ( B ` i ) - ( F ` i ) ) ) | 
						
							| 182 | 93 96 25 113 181 | letrd |  |-  ( ( ph /\ i e. X ) -> E <_ ( ( B ` i ) - ( F ` i ) ) ) | 
						
							| 183 | 24 93 19 | leaddsub2d |  |-  ( ( ph /\ i e. X ) -> ( ( ( F ` i ) + E ) <_ ( B ` i ) <-> E <_ ( ( B ` i ) - ( F ` i ) ) ) ) | 
						
							| 184 | 182 183 | mpbird |  |-  ( ( ph /\ i e. X ) -> ( ( F ` i ) + E ) <_ ( B ` i ) ) | 
						
							| 185 | 184 | 3ad2antl1 |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( ( F ` i ) + E ) <_ ( B ` i ) ) | 
						
							| 186 | 90 165 166 179 185 | ltletrd |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) < ( B ` i ) ) | 
						
							| 187 | 82 83 90 163 186 | eliood |  |-  ( ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) /\ i e. X ) -> ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 188 | 187 | ralrimiva |  |-  ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 189 | 81 188 | jca |  |-  ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> ( g Fn X /\ A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 190 |  | vex |  |-  g e. _V | 
						
							| 191 | 190 | elixp |  |-  ( g e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> ( g Fn X /\ A. i e. X ( g ` i ) e. ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 192 | 189 191 | sylibr |  |-  ( ( ph /\ g e. ( RR ^m X ) /\ ( F D g ) < E ) -> g e. X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 193 | 79 74 17 61 192 | ballss3 |  |-  ( ph -> ( F ( ball ` D ) E ) C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 194 | 65 193 | eqsstrd |  |-  ( ph -> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) | 
						
							| 195 | 78 194 | jca |  |-  ( ph -> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 196 |  | eleq2 |  |-  ( v = V -> ( F e. v <-> F e. V ) ) | 
						
							| 197 |  | sseq1 |  |-  ( v = V -> ( v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) <-> V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 198 | 196 197 | anbi12d |  |-  ( v = V -> ( ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) <-> ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) ) | 
						
							| 199 | 198 | rspcev |  |-  ( ( V e. ( TopOpen ` ( RR^ ` X ) ) /\ ( F e. V /\ V C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) | 
						
							| 200 | 72 195 199 | syl2anc |  |-  ( ph -> E. v e. ( TopOpen ` ( RR^ ` X ) ) ( F e. v /\ v C_ X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) ) ) |