Step |
Hyp |
Ref |
Expression |
1 |
|
rrxtopnfi.1 |
|- ( ph -> I e. Fin ) |
2 |
1
|
rrxtopn |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) ) |
3 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
4 |
|
eqid |
|- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
5 |
1 3 4
|
rrxbasefi |
|- ( ph -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
6 |
5
|
adantr |
|- ( ( ph /\ f e. ( Base ` ( RR^ ` I ) ) ) -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
7 |
|
simpl |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> ph ) |
8 |
|
simprl |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> f e. ( Base ` ( RR^ ` I ) ) ) |
9 |
|
simpr |
|- ( ( ph /\ f e. ( Base ` ( RR^ ` I ) ) ) -> f e. ( Base ` ( RR^ ` I ) ) ) |
10 |
9 6
|
eleqtrd |
|- ( ( ph /\ f e. ( Base ` ( RR^ ` I ) ) ) -> f e. ( RR ^m I ) ) |
11 |
8 10
|
syldan |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> f e. ( RR ^m I ) ) |
12 |
|
simprr |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> g e. ( Base ` ( RR^ ` I ) ) ) |
13 |
|
simpr |
|- ( ( ph /\ g e. ( Base ` ( RR^ ` I ) ) ) -> g e. ( Base ` ( RR^ ` I ) ) ) |
14 |
5
|
adantr |
|- ( ( ph /\ g e. ( Base ` ( RR^ ` I ) ) ) -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
15 |
13 14
|
eleqtrd |
|- ( ( ph /\ g e. ( Base ` ( RR^ ` I ) ) ) -> g e. ( RR ^m I ) ) |
16 |
12 15
|
syldan |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> g e. ( RR ^m I ) ) |
17 |
|
elmapi |
|- ( f e. ( RR ^m I ) -> f : I --> RR ) |
18 |
17
|
adantr |
|- ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> f : I --> RR ) |
19 |
18
|
ffvelrnda |
|- ( ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. RR ) |
20 |
|
elmapi |
|- ( g e. ( RR ^m I ) -> g : I --> RR ) |
21 |
20
|
adantl |
|- ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> g : I --> RR ) |
22 |
21
|
ffvelrnda |
|- ( ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( g ` x ) e. RR ) |
23 |
19 22
|
resubcld |
|- ( ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) e. RR ) |
24 |
23
|
resqcld |
|- ( ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) e. RR ) |
25 |
|
eqid |
|- ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) |
26 |
24 25
|
fmptd |
|- ( ( f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) : I --> RR ) |
27 |
26
|
3adant1 |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) : I --> RR ) |
28 |
1
|
3ad2ant1 |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> I e. Fin ) |
29 |
|
0red |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> 0 e. RR ) |
30 |
27 28 29
|
fidmfisupp |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) finSupp 0 ) |
31 |
|
regsumsupp |
|- ( ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) : I --> RR /\ ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) finSupp 0 /\ I e. Fin ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) = sum_ k e. ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) supp 0 ) ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) ) |
32 |
27 30 28 31
|
syl3anc |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) = sum_ k e. ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) supp 0 ) ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) ) |
33 |
|
ax-resscn |
|- RR C_ CC |
34 |
33
|
a1i |
|- ( f e. ( RR ^m I ) -> RR C_ CC ) |
35 |
17 34
|
fssd |
|- ( f e. ( RR ^m I ) -> f : I --> CC ) |
36 |
35
|
3ad2ant2 |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> f : I --> CC ) |
37 |
36
|
ffvelrnda |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. CC ) |
38 |
33
|
a1i |
|- ( g e. ( RR ^m I ) -> RR C_ CC ) |
39 |
20 38
|
fssd |
|- ( g e. ( RR ^m I ) -> g : I --> CC ) |
40 |
39
|
3ad2ant3 |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> g : I --> CC ) |
41 |
40
|
ffvelrnda |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( g ` x ) e. CC ) |
42 |
37 41
|
subcld |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) e. CC ) |
43 |
42
|
sqcld |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ x e. I ) -> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) e. CC ) |
44 |
43 25
|
fmptd |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) : I --> CC ) |
45 |
28 44
|
fsumsupp0 |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> sum_ k e. ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) supp 0 ) ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) = sum_ k e. I ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) ) |
46 |
|
eqidd |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ k e. I ) -> ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) |
47 |
|
fveq2 |
|- ( x = k -> ( f ` x ) = ( f ` k ) ) |
48 |
|
fveq2 |
|- ( x = k -> ( g ` x ) = ( g ` k ) ) |
49 |
47 48
|
oveq12d |
|- ( x = k -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` k ) - ( g ` k ) ) ) |
50 |
49
|
oveq1d |
|- ( x = k -> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) = ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
51 |
50
|
adantl |
|- ( ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ k e. I ) /\ x = k ) -> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) = ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
52 |
|
simpr |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ k e. I ) -> k e. I ) |
53 |
|
ovexd |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ k e. I ) -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) e. _V ) |
54 |
46 51 52 53
|
fvmptd |
|- ( ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) /\ k e. I ) -> ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) = ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
55 |
54
|
sumeq2dv |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> sum_ k e. I ( ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ` k ) = sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
56 |
32 45 55
|
3eqtrd |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) = sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
57 |
56
|
fveq2d |
|- ( ( ph /\ f e. ( RR ^m I ) /\ g e. ( RR ^m I ) ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) = ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
58 |
7 11 16 57
|
syl3anc |
|- ( ( ph /\ ( f e. ( Base ` ( RR^ ` I ) ) /\ g e. ( Base ` ( RR^ ` I ) ) ) ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) = ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
59 |
5 6 58
|
mpoeq123dva |
|- ( ph -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
60 |
59
|
fveq2d |
|- ( ph -> ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) = ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
61 |
2 60
|
eqtrd |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |