Step |
Hyp |
Ref |
Expression |
1 |
|
rrxtopn.1 |
|- ( ph -> I e. V ) |
2 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
3 |
2
|
rrxval |
|- ( I e. V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
4 |
1 3
|
syl |
|- ( ph -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
5 |
4
|
fveq2d |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
6 |
|
ovex |
|- ( RRfld freeLMod I ) e. _V |
7 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
8 |
|
eqid |
|- ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
9 |
|
eqid |
|- ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
10 |
7 8 9
|
tcphtopn |
|- ( ( RRfld freeLMod I ) e. _V -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) ) |
11 |
6 10
|
ax-mp |
|- ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
12 |
11
|
a1i |
|- ( ph -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) ) |
13 |
4
|
eqcomd |
|- ( ph -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( RR^ ` I ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( dist ` ( RR^ ` I ) ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) = ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) ) |
16 |
5 12 15
|
3eqtrd |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) ) |
17 |
|
eqid |
|- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
18 |
2 17
|
rrxds |
|- ( I e. V -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) |
19 |
1 18
|
syl |
|- ( ph -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) |
20 |
19
|
eqcomd |
|- ( ph -> ( dist ` ( RR^ ` I ) ) = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
21 |
20
|
fveq2d |
|- ( ph -> ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) = ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) ) |
22 |
16 21
|
eqtrd |
|- ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) ) |