| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxtopn.1 |  |-  ( ph -> I e. V ) | 
						
							| 2 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 3 | 2 | rrxval |  |-  ( I e. V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 6 |  | ovex |  |-  ( RRfld freeLMod I ) e. _V | 
						
							| 7 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 8 |  | eqid |  |-  ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 9 |  | eqid |  |-  ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 10 | 7 8 9 | tcphtopn |  |-  ( ( RRfld freeLMod I ) e. _V -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) ) | 
						
							| 11 | 6 10 | ax-mp |  |-  ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) ) | 
						
							| 13 | 4 | eqcomd |  |-  ( ph -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( RR^ ` I ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ph -> ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ph -> ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) = ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) ) | 
						
							| 16 | 5 12 15 | 3eqtrd |  |-  ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) | 
						
							| 18 | 2 17 | rrxds |  |-  ( I e. V -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ph -> ( dist ` ( RR^ ` I ) ) = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ph -> ( MetOpen ` ( dist ` ( RR^ ` I ) ) ) = ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) ) | 
						
							| 22 | 16 21 | eqtrd |  |-  ( ph -> ( TopOpen ` ( RR^ ` I ) ) = ( MetOpen ` ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) ) |