| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
| 2 |
|
tcphtopn.d |
|- D = ( dist ` G ) |
| 3 |
|
tcphtopn.j |
|- J = ( TopOpen ` G ) |
| 4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 5 |
4
|
tcphex |
|- ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V |
| 6 |
|
eqid |
|- ( .i ` W ) = ( .i ` W ) |
| 7 |
1 4 6
|
tcphval |
|- G = ( W toNrmGrp ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) ) |
| 8 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 9 |
7 2 8
|
tngtopn |
|- ( ( W e. V /\ ( x e. ( Base ` W ) |-> ( sqrt ` ( x ( .i ` W ) x ) ) ) e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` G ) ) |
| 10 |
5 9
|
mpan2 |
|- ( W e. V -> ( MetOpen ` D ) = ( TopOpen ` G ) ) |
| 11 |
3 10
|
eqtr4id |
|- ( W e. V -> J = ( MetOpen ` D ) ) |