| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphex.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | eqid |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) | 
						
							| 3 |  | fvrn0 |  |-  ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) | 
						
							| 4 | 3 | a1i |  |-  ( x e. V -> ( sqrt ` ( x ., x ) ) e. ( ran sqrt u. { (/) } ) ) | 
						
							| 5 | 2 4 | fmpti |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) | 
						
							| 6 | 1 | fvexi |  |-  V e. _V | 
						
							| 7 |  | cnex |  |-  CC e. _V | 
						
							| 8 |  | sqrtf |  |-  sqrt : CC --> CC | 
						
							| 9 |  | frn |  |-  ( sqrt : CC --> CC -> ran sqrt C_ CC ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ran sqrt C_ CC | 
						
							| 11 | 7 10 | ssexi |  |-  ran sqrt e. _V | 
						
							| 12 |  | p0ex |  |-  { (/) } e. _V | 
						
							| 13 | 11 12 | unex |  |-  ( ran sqrt u. { (/) } ) e. _V | 
						
							| 14 |  | fex2 |  |-  ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> ( ran sqrt u. { (/) } ) /\ V e. _V /\ ( ran sqrt u. { (/) } ) e. _V ) -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V ) | 
						
							| 15 | 5 6 13 14 | mp3an |  |-  ( x e. V |-> ( sqrt ` ( x ., x ) ) ) e. _V |