| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxtopn.1 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 2 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
| 3 |
2
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 4 |
1 3
|
syl |
⊢ ( 𝜑 → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 6 |
|
ovex |
⊢ ( ℝfld freeLMod 𝐼 ) ∈ V |
| 7 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
| 8 |
|
eqid |
⊢ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 9 |
|
eqid |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
| 10 |
7 8 9
|
tcphtopn |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ V → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) ) |
| 11 |
6 10
|
ax-mp |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) ) |
| 13 |
4
|
eqcomd |
⊢ ( 𝜑 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℝ^ ‘ 𝐼 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
| 16 |
5 12 15
|
3eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 18 |
2 17
|
rrxds |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 19 |
1 18
|
syl |
⊢ ( 𝜑 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 20 |
19
|
eqcomd |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) ) |
| 22 |
16 21
|
eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) ) |