Step |
Hyp |
Ref |
Expression |
1 |
|
rrxtopn.1 |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
2 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
3 |
2
|
rrxval |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( ℝ^ ‘ 𝐼 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
6 |
|
ovex |
⊢ ( ℝfld freeLMod 𝐼 ) ∈ V |
7 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) |
8 |
|
eqid |
⊢ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) |
10 |
7 8 9
|
tcphtopn |
⊢ ( ( ℝfld freeLMod 𝐼 ) ∈ V → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) ) |
11 |
6 10
|
ax-mp |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) ) |
13 |
4
|
eqcomd |
⊢ ( 𝜑 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ℝ^ ‘ 𝐼 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
16 |
5 12 15
|
3eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
17 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
18 |
2 17
|
rrxds |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
19 |
1 18
|
syl |
⊢ ( 𝜑 → ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
20 |
19
|
eqcomd |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) ) |
22 |
16 21
|
eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) , 𝑔 ∈ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑥 ) − ( 𝑔 ‘ 𝑥 ) ) ↑ 2 ) ) ) ) ) ) ) |