Metamath Proof Explorer


Theorem rrxtopn

Description: The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopn.1 φIV
Assertion rrxtopn φTopOpenmsup=MetOpenfBasemsup,gBasemsupfldxIfxgx2

Proof

Step Hyp Ref Expression
1 rrxtopn.1 φIV
2 eqid msup=msup
3 2 rrxval IVmsup=toCPreHilfldfreeLModI
4 1 3 syl φmsup=toCPreHilfldfreeLModI
5 4 fveq2d φTopOpenmsup=TopOpentoCPreHilfldfreeLModI
6 ovex fldfreeLModIV
7 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
8 eqid disttoCPreHilfldfreeLModI=disttoCPreHilfldfreeLModI
9 eqid TopOpentoCPreHilfldfreeLModI=TopOpentoCPreHilfldfreeLModI
10 7 8 9 tcphtopn fldfreeLModIVTopOpentoCPreHilfldfreeLModI=MetOpendisttoCPreHilfldfreeLModI
11 6 10 ax-mp TopOpentoCPreHilfldfreeLModI=MetOpendisttoCPreHilfldfreeLModI
12 11 a1i φTopOpentoCPreHilfldfreeLModI=MetOpendisttoCPreHilfldfreeLModI
13 4 eqcomd φtoCPreHilfldfreeLModI=msup
14 13 fveq2d φdisttoCPreHilfldfreeLModI=distmsup
15 14 fveq2d φMetOpendisttoCPreHilfldfreeLModI=MetOpendistmsup
16 5 12 15 3eqtrd φTopOpenmsup=MetOpendistmsup
17 eqid Basemsup=Basemsup
18 2 17 rrxds IVfBasemsup,gBasemsupfldxIfxgx2=distmsup
19 1 18 syl φfBasemsup,gBasemsupfldxIfxgx2=distmsup
20 19 eqcomd φdistmsup=fBasemsup,gBasemsupfldxIfxgx2
21 20 fveq2d φMetOpendistmsup=MetOpenfBasemsup,gBasemsupfldxIfxgx2
22 16 21 eqtrd φTopOpenmsup=MetOpenfBasemsup,gBasemsupfldxIfxgx2