| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsupp0.a |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | fsumsupp0.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 3 | 2 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 4 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 5 |  | suppvalfn |  |-  ( ( F Fn A /\ A e. Fin /\ 0 e. RR ) -> ( F supp 0 ) = { k e. A | ( F ` k ) =/= 0 } ) | 
						
							| 6 | 3 1 4 5 | syl3anc |  |-  ( ph -> ( F supp 0 ) = { k e. A | ( F ` k ) =/= 0 } ) | 
						
							| 7 |  | ssrab2 |  |-  { k e. A | ( F ` k ) =/= 0 } C_ A | 
						
							| 8 | 6 7 | eqsstrdi |  |-  ( ph -> ( F supp 0 ) C_ A ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ k e. ( F supp 0 ) ) -> F : A --> CC ) | 
						
							| 10 | 8 | sselda |  |-  ( ( ph /\ k e. ( F supp 0 ) ) -> k e. A ) | 
						
							| 11 | 9 10 | ffvelcdmd |  |-  ( ( ph /\ k e. ( F supp 0 ) ) -> ( F ` k ) e. CC ) | 
						
							| 12 |  | eldifi |  |-  ( k e. ( A \ ( F supp 0 ) ) -> k e. A ) | 
						
							| 13 | 12 | adantr |  |-  ( ( k e. ( A \ ( F supp 0 ) ) /\ -. ( F ` k ) = 0 ) -> k e. A ) | 
						
							| 14 |  | neqne |  |-  ( -. ( F ` k ) = 0 -> ( F ` k ) =/= 0 ) | 
						
							| 15 | 14 | adantl |  |-  ( ( k e. ( A \ ( F supp 0 ) ) /\ -. ( F ` k ) = 0 ) -> ( F ` k ) =/= 0 ) | 
						
							| 16 | 13 15 | jca |  |-  ( ( k e. ( A \ ( F supp 0 ) ) /\ -. ( F ` k ) = 0 ) -> ( k e. A /\ ( F ` k ) =/= 0 ) ) | 
						
							| 17 |  | rabid |  |-  ( k e. { k e. A | ( F ` k ) =/= 0 } <-> ( k e. A /\ ( F ` k ) =/= 0 ) ) | 
						
							| 18 | 16 17 | sylibr |  |-  ( ( k e. ( A \ ( F supp 0 ) ) /\ -. ( F ` k ) = 0 ) -> k e. { k e. A | ( F ` k ) =/= 0 } ) | 
						
							| 19 | 18 | adantll |  |-  ( ( ( ph /\ k e. ( A \ ( F supp 0 ) ) ) /\ -. ( F ` k ) = 0 ) -> k e. { k e. A | ( F ` k ) =/= 0 } ) | 
						
							| 20 | 6 | eleq2d |  |-  ( ph -> ( k e. ( F supp 0 ) <-> k e. { k e. A | ( F ` k ) =/= 0 } ) ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( ph /\ k e. ( A \ ( F supp 0 ) ) ) /\ -. ( F ` k ) = 0 ) -> ( k e. ( F supp 0 ) <-> k e. { k e. A | ( F ` k ) =/= 0 } ) ) | 
						
							| 22 | 19 21 | mpbird |  |-  ( ( ( ph /\ k e. ( A \ ( F supp 0 ) ) ) /\ -. ( F ` k ) = 0 ) -> k e. ( F supp 0 ) ) | 
						
							| 23 |  | eldifn |  |-  ( k e. ( A \ ( F supp 0 ) ) -> -. k e. ( F supp 0 ) ) | 
						
							| 24 | 23 | ad2antlr |  |-  ( ( ( ph /\ k e. ( A \ ( F supp 0 ) ) ) /\ -. ( F ` k ) = 0 ) -> -. k e. ( F supp 0 ) ) | 
						
							| 25 | 22 24 | condan |  |-  ( ( ph /\ k e. ( A \ ( F supp 0 ) ) ) -> ( F ` k ) = 0 ) | 
						
							| 26 | 8 11 25 1 | fsumss |  |-  ( ph -> sum_ k e. ( F supp 0 ) ( F ` k ) = sum_ k e. A ( F ` k ) ) |