| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsupp0.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fsumsupp0.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 3 | 2 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 4 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 5 |  | suppvalfn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐴  ∈  Fin  ∧  0  ∈  ℝ )  →  ( 𝐹  supp  0 )  =  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) | 
						
							| 6 | 3 1 4 5 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  supp  0 )  =  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 }  ⊆  𝐴 | 
						
							| 8 | 6 7 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝐹  supp  0 )  ⊆  𝐴 ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐹  supp  0 ) )  →  𝐹 : 𝐴 ⟶ ℂ ) | 
						
							| 10 | 8 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐹  supp  0 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 11 | 9 10 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐹  supp  0 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 12 |  | eldifi | ⊢ ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  𝑘  ∈  𝐴 ) | 
						
							| 14 |  | neqne | ⊢ ( ¬  ( 𝐹 ‘ 𝑘 )  =  0  →  ( 𝐹 ‘ 𝑘 )  ≠  0 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  ( 𝐹 ‘ 𝑘 )  ≠  0 ) | 
						
							| 16 | 13 15 | jca | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  ( 𝑘  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 17 |  | rabid | ⊢ ( 𝑘  ∈  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 }  ↔  ( 𝑘  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 18 | 16 17 | sylibr | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  𝑘  ∈  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) | 
						
							| 19 | 18 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  𝑘  ∈  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) | 
						
							| 20 | 6 | eleq2d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐹  supp  0 )  ↔  𝑘  ∈  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  ( 𝑘  ∈  ( 𝐹  supp  0 )  ↔  𝑘  ∈  { 𝑘  ∈  𝐴  ∣  ( 𝐹 ‘ 𝑘 )  ≠  0 } ) ) | 
						
							| 22 | 19 21 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  𝑘  ∈  ( 𝐹  supp  0 ) ) | 
						
							| 23 |  | eldifn | ⊢ ( 𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) )  →  ¬  𝑘  ∈  ( 𝐹  supp  0 ) ) | 
						
							| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) ) )  ∧  ¬  ( 𝐹 ‘ 𝑘 )  =  0 )  →  ¬  𝑘  ∈  ( 𝐹  supp  0 ) ) | 
						
							| 25 | 22 24 | condan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  ( 𝐹  supp  0 ) ) )  →  ( 𝐹 ‘ 𝑘 )  =  0 ) | 
						
							| 26 | 8 11 25 1 | fsumss | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐹  supp  0 ) ( 𝐹 ‘ 𝑘 )  =  Σ 𝑘  ∈  𝐴 ( 𝐹 ‘ 𝑘 ) ) |