| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsermpt.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 2 |  | fsumsermpt.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | fsumsermpt.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | fsumsermpt.f | ⊢ 𝐹  =  ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 ) | 
						
							| 5 |  | fsumsermpt.g | ⊢ 𝐺  =  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) | 
						
							| 6 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑚 )  ∈  Fin ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 8 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑚 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 8 2 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑚 )  →  𝑘  ∈  𝑍 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑚 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 11 | 7 10 3 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑚 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 6 11 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  ∈  ℂ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  ∈  ℂ ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  ∈  ℂ ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑚 ) ) | 
						
							| 16 | 15 | sumeq1d | ⊢ ( 𝑛  =  𝑚  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴 ) | 
						
							| 17 | 16 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑛 ) 𝐴 )  =  ( 𝑚  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴 ) | 
						
							| 18 | 4 17 | eqtri | ⊢ 𝐹  =  ( 𝑚  ∈  𝑍  ↦  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴 ) | 
						
							| 19 | 18 | fnmpt | ⊢ ( ∀ 𝑚  ∈  𝑍 Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  ∈  ℂ  →  𝐹  Fn  𝑍 ) | 
						
							| 20 | 14 19 | syl | ⊢ ( 𝜑  →  𝐹  Fn  𝑍 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 22 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑍 ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 24 | 23 | nfcsb1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴 | 
						
							| 25 | 24 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ | 
						
							| 26 | 22 25 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 27 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑍  ↔  𝑗  ∈  𝑍 ) ) | 
						
							| 28 | 27 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑍 ) ) ) | 
						
							| 29 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐴  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 31 | 28 30 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) ) | 
						
							| 32 | 26 31 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑘  ∈  𝑍  ↦  𝐴 )  =  ( 𝑘  ∈  𝑍  ↦  𝐴 ) | 
						
							| 34 | 23 24 29 33 | fvmptf | ⊢ ( ( 𝑗  ∈  𝑍  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 35 | 21 32 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 36 | 35 32 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐴 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 37 |  | addcl | ⊢ ( ( 𝑗  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( 𝑗  +  𝑥 )  ∈  ℂ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  ℂ  ∧  𝑥  ∈  ℂ ) )  →  ( 𝑗  +  𝑥 )  ∈  ℂ ) | 
						
							| 39 | 2 1 36 38 | seqf | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 40 | 39 | ffnd | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) )  Fn  𝑍 ) | 
						
							| 41 | 5 | a1i | ⊢ ( 𝜑  →  𝐺  =  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) ) | 
						
							| 42 | 41 | fneq1d | ⊢ ( 𝜑  →  ( 𝐺  Fn  𝑍  ↔  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) )  Fn  𝑍 ) ) | 
						
							| 43 | 40 42 | mpbird | ⊢ ( 𝜑  →  𝐺  Fn  𝑍 ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  𝑍 ) | 
						
							| 45 | 18 | fvmpt2 | ⊢ ( ( 𝑚  ∈  𝑍  ∧  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  ∈  ℂ )  →  ( 𝐹 ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴 ) | 
						
							| 46 | 44 13 45 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴 ) | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑗 𝐴 | 
						
							| 48 | 29 47 24 | cbvsum | ⊢ Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  =  Σ 𝑗  ∈  ( 𝑀 ... 𝑚 ) ⦋ 𝑗  /  𝑘 ⦌ 𝐴 | 
						
							| 49 | 48 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑚 ) 𝐴  =  Σ 𝑗  ∈  ( 𝑀 ... 𝑚 ) ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 50 | 46 49 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  =  Σ 𝑗  ∈  ( 𝑀 ... 𝑚 ) ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 51 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 52 |  | elfzuz | ⊢ ( 𝑗  ∈  ( 𝑀 ... 𝑚 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 53 | 52 2 | eleqtrrdi | ⊢ ( 𝑗  ∈  ( 𝑀 ... 𝑚 )  →  𝑗  ∈  𝑍 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 55 | 51 54 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 56 | 55 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐴 ) ‘ 𝑗 )  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐴 ) | 
						
							| 57 |  | id | ⊢ ( 𝑚  ∈  𝑍  →  𝑚  ∈  𝑍 ) | 
						
							| 58 | 57 2 | eleqtrdi | ⊢ ( 𝑚  ∈  𝑍  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 60 | 51 54 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 61 | 60 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  ∧  𝑗  ∈  ( 𝑀 ... 𝑚 ) )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 62 | 56 59 61 | fsumser | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  Σ 𝑗  ∈  ( 𝑀 ... 𝑚 ) ⦋ 𝑗  /  𝑘 ⦌ 𝐴  =  ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) ‘ 𝑚 ) ) | 
						
							| 63 | 5 | fveq1i | ⊢ ( 𝐺 ‘ 𝑚 )  =  ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) ‘ 𝑚 ) | 
						
							| 64 | 63 | eqcomi | ⊢ ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑚 ) | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑚 ) ) | 
						
							| 66 | 50 62 65 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐺 ‘ 𝑚 ) ) | 
						
							| 67 | 20 43 66 | eqfnfvd | ⊢ ( 𝜑  →  𝐹  =  𝐺 ) |