Metamath Proof Explorer


Theorem fsumsermpt

Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fsumsermpt.m ( 𝜑𝑀 ∈ ℤ )
fsumsermpt.z 𝑍 = ( ℤ𝑀 )
fsumsermpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
fsumsermpt.f 𝐹 = ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 )
fsumsermpt.g 𝐺 = seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) )
Assertion fsumsermpt ( 𝜑𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 fsumsermpt.m ( 𝜑𝑀 ∈ ℤ )
2 fsumsermpt.z 𝑍 = ( ℤ𝑀 )
3 fsumsermpt.a ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
4 fsumsermpt.f 𝐹 = ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 )
5 fsumsermpt.g 𝐺 = seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) )
6 fzfid ( 𝜑 → ( 𝑀 ... 𝑚 ) ∈ Fin )
7 simpl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝜑 )
8 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘 ∈ ( ℤ𝑀 ) )
9 8 2 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘𝑍 )
10 9 adantl ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑘𝑍 )
11 7 10 3 syl2anc ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → 𝐴 ∈ ℂ )
12 6 11 fsumcl ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ )
13 12 adantr ( ( 𝜑𝑚𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ )
14 13 ralrimiva ( 𝜑 → ∀ 𝑚𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ )
15 oveq2 ( 𝑛 = 𝑚 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑚 ) )
16 15 sumeq1d ( 𝑛 = 𝑚 → Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 )
17 16 cbvmptv ( 𝑛𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑛 ) 𝐴 ) = ( 𝑚𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 )
18 4 17 eqtri 𝐹 = ( 𝑚𝑍 ↦ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 )
19 18 fnmpt ( ∀ 𝑚𝑍 Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ → 𝐹 Fn 𝑍 )
20 14 19 syl ( 𝜑𝐹 Fn 𝑍 )
21 simpr ( ( 𝜑𝑗𝑍 ) → 𝑗𝑍 )
22 nfv 𝑘 ( 𝜑𝑗𝑍 )
23 nfcv 𝑘 𝑗
24 23 nfcsb1 𝑘 𝑗 / 𝑘 𝐴
25 24 nfel1 𝑘 𝑗 / 𝑘 𝐴 ∈ ℂ
26 22 25 nfim 𝑘 ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ℂ )
27 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝑍𝑗𝑍 ) )
28 27 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝑍 ) ↔ ( 𝜑𝑗𝑍 ) ) )
29 csbeq1a ( 𝑘 = 𝑗𝐴 = 𝑗 / 𝑘 𝐴 )
30 29 eleq1d ( 𝑘 = 𝑗 → ( 𝐴 ∈ ℂ ↔ 𝑗 / 𝑘 𝐴 ∈ ℂ ) )
31 28 30 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ℂ ) ) )
32 26 31 3 chvarfv ( ( 𝜑𝑗𝑍 ) → 𝑗 / 𝑘 𝐴 ∈ ℂ )
33 eqid ( 𝑘𝑍𝐴 ) = ( 𝑘𝑍𝐴 )
34 23 24 29 33 fvmptf ( ( 𝑗𝑍 𝑗 / 𝑘 𝐴 ∈ ℂ ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
35 21 32 34 syl2anc ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
36 35 32 eqeltrd ( ( 𝜑𝑗𝑍 ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑗 ) ∈ ℂ )
37 addcl ( ( 𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑗 + 𝑥 ) ∈ ℂ )
38 37 adantl ( ( 𝜑 ∧ ( 𝑗 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑗 + 𝑥 ) ∈ ℂ )
39 2 1 36 38 seqf ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) : 𝑍 ⟶ ℂ )
40 39 ffnd ( 𝜑 → seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) Fn 𝑍 )
41 5 a1i ( 𝜑𝐺 = seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) )
42 41 fneq1d ( 𝜑 → ( 𝐺 Fn 𝑍 ↔ seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) Fn 𝑍 ) )
43 40 42 mpbird ( 𝜑𝐺 Fn 𝑍 )
44 simpr ( ( 𝜑𝑚𝑍 ) → 𝑚𝑍 )
45 18 fvmpt2 ( ( 𝑚𝑍 ∧ Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 ∈ ℂ ) → ( 𝐹𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 )
46 44 13 45 syl2anc ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 )
47 nfcv 𝑗 ( 𝑀 ... 𝑚 )
48 nfcv 𝑘 ( 𝑀 ... 𝑚 )
49 nfcv 𝑗 𝐴
50 29 47 48 49 24 cbvsum Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) 𝑗 / 𝑘 𝐴
51 50 a1i ( ( 𝜑𝑚𝑍 ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑚 ) 𝐴 = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) 𝑗 / 𝑘 𝐴 )
52 46 51 eqtrd ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) = Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) 𝑗 / 𝑘 𝐴 )
53 simpl ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝜑 )
54 elfzuz ( 𝑗 ∈ ( 𝑀 ... 𝑚 ) → 𝑗 ∈ ( ℤ𝑀 ) )
55 54 2 eleqtrrdi ( 𝑗 ∈ ( 𝑀 ... 𝑚 ) → 𝑗𝑍 )
56 55 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑗𝑍 )
57 53 56 35 syl2anc ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
58 57 adantlr ( ( ( 𝜑𝑚𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → ( ( 𝑘𝑍𝐴 ) ‘ 𝑗 ) = 𝑗 / 𝑘 𝐴 )
59 id ( 𝑚𝑍𝑚𝑍 )
60 59 2 eleqtrdi ( 𝑚𝑍𝑚 ∈ ( ℤ𝑀 ) )
61 60 adantl ( ( 𝜑𝑚𝑍 ) → 𝑚 ∈ ( ℤ𝑀 ) )
62 53 56 32 syl2anc ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑗 / 𝑘 𝐴 ∈ ℂ )
63 62 adantlr ( ( ( 𝜑𝑚𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑚 ) ) → 𝑗 / 𝑘 𝐴 ∈ ℂ )
64 58 61 63 fsumser ( ( 𝜑𝑚𝑍 ) → Σ 𝑗 ∈ ( 𝑀 ... 𝑚 ) 𝑗 / 𝑘 𝐴 = ( seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ‘ 𝑚 ) )
65 5 fveq1i ( 𝐺𝑚 ) = ( seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ‘ 𝑚 )
66 65 eqcomi ( seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ‘ 𝑚 ) = ( 𝐺𝑚 )
67 66 a1i ( ( 𝜑𝑚𝑍 ) → ( seq 𝑀 ( + , ( 𝑘𝑍𝐴 ) ) ‘ 𝑚 ) = ( 𝐺𝑚 ) )
68 52 64 67 3eqtrd ( ( 𝜑𝑚𝑍 ) → ( 𝐹𝑚 ) = ( 𝐺𝑚 ) )
69 20 43 68 eqfnfvd ( 𝜑𝐹 = 𝐺 )