| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsermpt.m |  | 
						
							| 2 |  | fsumsermpt.z |  | 
						
							| 3 |  | fsumsermpt.a |  | 
						
							| 4 |  | fsumsermpt.f |  | 
						
							| 5 |  | fsumsermpt.g |  | 
						
							| 6 |  | fzfid |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | elfzuz |  | 
						
							| 9 | 8 2 | eleqtrrdi |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 7 10 3 | syl2anc |  | 
						
							| 12 | 6 11 | fsumcl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | ralrimiva |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 15 | sumeq1d |  | 
						
							| 17 | 16 | cbvmptv |  | 
						
							| 18 | 4 17 | eqtri |  | 
						
							| 19 | 18 | fnmpt |  | 
						
							| 20 | 14 19 | syl |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 |  | nfv |  | 
						
							| 23 |  | nfcv |  | 
						
							| 24 | 23 | nfcsb1 |  | 
						
							| 25 | 24 | nfel1 |  | 
						
							| 26 | 22 25 | nfim |  | 
						
							| 27 |  | eleq1w |  | 
						
							| 28 | 27 | anbi2d |  | 
						
							| 29 |  | csbeq1a |  | 
						
							| 30 | 29 | eleq1d |  | 
						
							| 31 | 28 30 | imbi12d |  | 
						
							| 32 | 26 31 3 | chvarfv |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 23 24 29 33 | fvmptf |  | 
						
							| 35 | 21 32 34 | syl2anc |  | 
						
							| 36 | 35 32 | eqeltrd |  | 
						
							| 37 |  | addcl |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 2 1 36 38 | seqf |  | 
						
							| 40 | 39 | ffnd |  | 
						
							| 41 | 5 | a1i |  | 
						
							| 42 | 41 | fneq1d |  | 
						
							| 43 | 40 42 | mpbird |  | 
						
							| 44 |  | simpr |  | 
						
							| 45 | 18 | fvmpt2 |  | 
						
							| 46 | 44 13 45 | syl2anc |  | 
						
							| 47 |  | nfcv |  | 
						
							| 48 | 29 47 24 | cbvsum |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 46 49 | eqtrd |  | 
						
							| 51 |  | simpl |  | 
						
							| 52 |  | elfzuz |  | 
						
							| 53 | 52 2 | eleqtrrdi |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 51 54 35 | syl2anc |  | 
						
							| 56 | 55 | adantlr |  | 
						
							| 57 |  | id |  | 
						
							| 58 | 57 2 | eleqtrdi |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 51 54 32 | syl2anc |  | 
						
							| 61 | 60 | adantlr |  | 
						
							| 62 | 56 59 61 | fsumser |  | 
						
							| 63 | 5 | fveq1i |  | 
						
							| 64 | 63 | eqcomi |  | 
						
							| 65 | 64 | a1i |  | 
						
							| 66 | 50 62 65 | 3eqtrd |  | 
						
							| 67 | 20 43 66 | eqfnfvd |  |