Metamath Proof Explorer


Theorem fsumsermpt

Description: A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fsumsermpt.m φ M
fsumsermpt.z Z = M
fsumsermpt.a φ k Z A
fsumsermpt.f F = n Z k = M n A
fsumsermpt.g G = seq M + k Z A
Assertion fsumsermpt φ F = G

Proof

Step Hyp Ref Expression
1 fsumsermpt.m φ M
2 fsumsermpt.z Z = M
3 fsumsermpt.a φ k Z A
4 fsumsermpt.f F = n Z k = M n A
5 fsumsermpt.g G = seq M + k Z A
6 fzfid φ M m Fin
7 simpl φ k M m φ
8 elfzuz k M m k M
9 8 2 eleqtrrdi k M m k Z
10 9 adantl φ k M m k Z
11 7 10 3 syl2anc φ k M m A
12 6 11 fsumcl φ k = M m A
13 12 adantr φ m Z k = M m A
14 13 ralrimiva φ m Z k = M m A
15 oveq2 n = m M n = M m
16 15 sumeq1d n = m k = M n A = k = M m A
17 16 cbvmptv n Z k = M n A = m Z k = M m A
18 4 17 eqtri F = m Z k = M m A
19 18 fnmpt m Z k = M m A F Fn Z
20 14 19 syl φ F Fn Z
21 simpr φ j Z j Z
22 nfv k φ j Z
23 nfcv _ k j
24 23 nfcsb1 _ k j / k A
25 24 nfel1 k j / k A
26 22 25 nfim k φ j Z j / k A
27 eleq1w k = j k Z j Z
28 27 anbi2d k = j φ k Z φ j Z
29 csbeq1a k = j A = j / k A
30 29 eleq1d k = j A j / k A
31 28 30 imbi12d k = j φ k Z A φ j Z j / k A
32 26 31 3 chvarfv φ j Z j / k A
33 eqid k Z A = k Z A
34 23 24 29 33 fvmptf j Z j / k A k Z A j = j / k A
35 21 32 34 syl2anc φ j Z k Z A j = j / k A
36 35 32 eqeltrd φ j Z k Z A j
37 addcl j x j + x
38 37 adantl φ j x j + x
39 2 1 36 38 seqf φ seq M + k Z A : Z
40 39 ffnd φ seq M + k Z A Fn Z
41 5 a1i φ G = seq M + k Z A
42 41 fneq1d φ G Fn Z seq M + k Z A Fn Z
43 40 42 mpbird φ G Fn Z
44 simpr φ m Z m Z
45 18 fvmpt2 m Z k = M m A F m = k = M m A
46 44 13 45 syl2anc φ m Z F m = k = M m A
47 nfcv _ j A
48 29 47 24 cbvsum k = M m A = j = M m j / k A
49 48 a1i φ m Z k = M m A = j = M m j / k A
50 46 49 eqtrd φ m Z F m = j = M m j / k A
51 simpl φ j M m φ
52 elfzuz j M m j M
53 52 2 eleqtrrdi j M m j Z
54 53 adantl φ j M m j Z
55 51 54 35 syl2anc φ j M m k Z A j = j / k A
56 55 adantlr φ m Z j M m k Z A j = j / k A
57 id m Z m Z
58 57 2 eleqtrdi m Z m M
59 58 adantl φ m Z m M
60 51 54 32 syl2anc φ j M m j / k A
61 60 adantlr φ m Z j M m j / k A
62 56 59 61 fsumser φ m Z j = M m j / k A = seq M + k Z A m
63 5 fveq1i G m = seq M + k Z A m
64 63 eqcomi seq M + k Z A m = G m
65 64 a1i φ m Z seq M + k Z A m = G m
66 50 62 65 3eqtrd φ m Z F m = G m
67 20 43 66 eqfnfvd φ F = G