| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsermpt.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 2 |  | fsumsermpt.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | fsumsermpt.a |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 4 |  | fsumsermpt.f |  |-  F = ( n e. Z |-> sum_ k e. ( M ... n ) A ) | 
						
							| 5 |  | fsumsermpt.g |  |-  G = seq M ( + , ( k e. Z |-> A ) ) | 
						
							| 6 |  | fzfid |  |-  ( ph -> ( M ... m ) e. Fin ) | 
						
							| 7 |  | simpl |  |-  ( ( ph /\ k e. ( M ... m ) ) -> ph ) | 
						
							| 8 |  | elfzuz |  |-  ( k e. ( M ... m ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 9 | 8 2 | eleqtrrdi |  |-  ( k e. ( M ... m ) -> k e. Z ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ k e. ( M ... m ) ) -> k e. Z ) | 
						
							| 11 | 7 10 3 | syl2anc |  |-  ( ( ph /\ k e. ( M ... m ) ) -> A e. CC ) | 
						
							| 12 | 6 11 | fsumcl |  |-  ( ph -> sum_ k e. ( M ... m ) A e. CC ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A e. CC ) | 
						
							| 14 | 13 | ralrimiva |  |-  ( ph -> A. m e. Z sum_ k e. ( M ... m ) A e. CC ) | 
						
							| 15 |  | oveq2 |  |-  ( n = m -> ( M ... n ) = ( M ... m ) ) | 
						
							| 16 | 15 | sumeq1d |  |-  ( n = m -> sum_ k e. ( M ... n ) A = sum_ k e. ( M ... m ) A ) | 
						
							| 17 | 16 | cbvmptv |  |-  ( n e. Z |-> sum_ k e. ( M ... n ) A ) = ( m e. Z |-> sum_ k e. ( M ... m ) A ) | 
						
							| 18 | 4 17 | eqtri |  |-  F = ( m e. Z |-> sum_ k e. ( M ... m ) A ) | 
						
							| 19 | 18 | fnmpt |  |-  ( A. m e. Z sum_ k e. ( M ... m ) A e. CC -> F Fn Z ) | 
						
							| 20 | 14 19 | syl |  |-  ( ph -> F Fn Z ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ j e. Z ) -> j e. Z ) | 
						
							| 22 |  | nfv |  |-  F/ k ( ph /\ j e. Z ) | 
						
							| 23 |  | nfcv |  |-  F/_ k j | 
						
							| 24 | 23 | nfcsb1 |  |-  F/_ k [_ j / k ]_ A | 
						
							| 25 | 24 | nfel1 |  |-  F/ k [_ j / k ]_ A e. CC | 
						
							| 26 | 22 25 | nfim |  |-  F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) | 
						
							| 27 |  | eleq1w |  |-  ( k = j -> ( k e. Z <-> j e. Z ) ) | 
						
							| 28 | 27 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) | 
						
							| 29 |  | csbeq1a |  |-  ( k = j -> A = [_ j / k ]_ A ) | 
						
							| 30 | 29 | eleq1d |  |-  ( k = j -> ( A e. CC <-> [_ j / k ]_ A e. CC ) ) | 
						
							| 31 | 28 30 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. Z ) -> A e. CC ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) ) ) | 
						
							| 32 | 26 31 3 | chvarfv |  |-  ( ( ph /\ j e. Z ) -> [_ j / k ]_ A e. CC ) | 
						
							| 33 |  | eqid |  |-  ( k e. Z |-> A ) = ( k e. Z |-> A ) | 
						
							| 34 | 23 24 29 33 | fvmptf |  |-  ( ( j e. Z /\ [_ j / k ]_ A e. CC ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 35 | 21 32 34 | syl2anc |  |-  ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 36 | 35 32 | eqeltrd |  |-  ( ( ph /\ j e. Z ) -> ( ( k e. Z |-> A ) ` j ) e. CC ) | 
						
							| 37 |  | addcl |  |-  ( ( j e. CC /\ x e. CC ) -> ( j + x ) e. CC ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ ( j e. CC /\ x e. CC ) ) -> ( j + x ) e. CC ) | 
						
							| 39 | 2 1 36 38 | seqf |  |-  ( ph -> seq M ( + , ( k e. Z |-> A ) ) : Z --> CC ) | 
						
							| 40 | 39 | ffnd |  |-  ( ph -> seq M ( + , ( k e. Z |-> A ) ) Fn Z ) | 
						
							| 41 | 5 | a1i |  |-  ( ph -> G = seq M ( + , ( k e. Z |-> A ) ) ) | 
						
							| 42 | 41 | fneq1d |  |-  ( ph -> ( G Fn Z <-> seq M ( + , ( k e. Z |-> A ) ) Fn Z ) ) | 
						
							| 43 | 40 42 | mpbird |  |-  ( ph -> G Fn Z ) | 
						
							| 44 |  | simpr |  |-  ( ( ph /\ m e. Z ) -> m e. Z ) | 
						
							| 45 | 18 | fvmpt2 |  |-  ( ( m e. Z /\ sum_ k e. ( M ... m ) A e. CC ) -> ( F ` m ) = sum_ k e. ( M ... m ) A ) | 
						
							| 46 | 44 13 45 | syl2anc |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ k e. ( M ... m ) A ) | 
						
							| 47 |  | nfcv |  |-  F/_ j A | 
						
							| 48 | 29 47 24 | cbvsum |  |-  sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A | 
						
							| 49 | 48 | a1i |  |-  ( ( ph /\ m e. Z ) -> sum_ k e. ( M ... m ) A = sum_ j e. ( M ... m ) [_ j / k ]_ A ) | 
						
							| 50 | 46 49 | eqtrd |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = sum_ j e. ( M ... m ) [_ j / k ]_ A ) | 
						
							| 51 |  | simpl |  |-  ( ( ph /\ j e. ( M ... m ) ) -> ph ) | 
						
							| 52 |  | elfzuz |  |-  ( j e. ( M ... m ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 53 | 52 2 | eleqtrrdi |  |-  ( j e. ( M ... m ) -> j e. Z ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ j e. ( M ... m ) ) -> j e. Z ) | 
						
							| 55 | 51 54 35 | syl2anc |  |-  ( ( ph /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 56 | 55 | adantlr |  |-  ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> ( ( k e. Z |-> A ) ` j ) = [_ j / k ]_ A ) | 
						
							| 57 |  | id |  |-  ( m e. Z -> m e. Z ) | 
						
							| 58 | 57 2 | eleqtrdi |  |-  ( m e. Z -> m e. ( ZZ>= ` M ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ph /\ m e. Z ) -> m e. ( ZZ>= ` M ) ) | 
						
							| 60 | 51 54 32 | syl2anc |  |-  ( ( ph /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC ) | 
						
							| 61 | 60 | adantlr |  |-  ( ( ( ph /\ m e. Z ) /\ j e. ( M ... m ) ) -> [_ j / k ]_ A e. CC ) | 
						
							| 62 | 56 59 61 | fsumser |  |-  ( ( ph /\ m e. Z ) -> sum_ j e. ( M ... m ) [_ j / k ]_ A = ( seq M ( + , ( k e. Z |-> A ) ) ` m ) ) | 
						
							| 63 | 5 | fveq1i |  |-  ( G ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` m ) | 
						
							| 64 | 63 | eqcomi |  |-  ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m ) | 
						
							| 65 | 64 | a1i |  |-  ( ( ph /\ m e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` m ) = ( G ` m ) ) | 
						
							| 66 | 50 62 65 | 3eqtrd |  |-  ( ( ph /\ m e. Z ) -> ( F ` m ) = ( G ` m ) ) | 
						
							| 67 | 20 43 66 | eqfnfvd |  |-  ( ph -> F = G ) |