Metamath Proof Explorer


Theorem fsumser

Description: A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 and fsump1i , which should make our notation clear and from which, along with closure fsumcl , we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 21-Apr-2014)

Ref Expression
Hypotheses fsumser.1 φ k M N F k = A
fsumser.2 φ N M
fsumser.3 φ k M N A
Assertion fsumser φ k = M N A = seq M + F N

Proof

Step Hyp Ref Expression
1 fsumser.1 φ k M N F k = A
2 fsumser.2 φ N M
3 fsumser.3 φ k M N A
4 eleq1w m = k m M N k M N
5 fveq2 m = k F m = F k
6 4 5 ifbieq1d m = k if m M N F m 0 = if k M N F k 0
7 eqid m M if m M N F m 0 = m M if m M N F m 0
8 fvex F k V
9 c0ex 0 V
10 8 9 ifex if k M N F k 0 V
11 6 7 10 fvmpt k M m M if m M N F m 0 k = if k M N F k 0
12 1 ifeq1da φ if k M N F k 0 = if k M N A 0
13 11 12 sylan9eqr φ k M m M if m M N F m 0 k = if k M N A 0
14 ssidd φ M N M N
15 13 2 3 14 fsumsers φ k = M N A = seq M + m M if m M N F m 0 N
16 elfzuz k M N k M
17 16 11 syl k M N m M if m M N F m 0 k = if k M N F k 0
18 iftrue k M N if k M N F k 0 = F k
19 17 18 eqtrd k M N m M if m M N F m 0 k = F k
20 19 adantl φ k M N m M if m M N F m 0 k = F k
21 2 20 seqfveq φ seq M + m M if m M N F m 0 N = seq M + F N
22 15 21 eqtrd φ k = M N A = seq M + F N