Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcllem.1 |
|
2 |
|
fsumcllem.2 |
|
3 |
|
fsumcllem.3 |
|
4 |
|
fsumcllem.4 |
|
5 |
|
fsumcl2lem.5 |
|
6 |
5
|
a1d |
|
7 |
6
|
necon4bd |
|
8 |
|
sumfc |
|
9 |
|
fveq2 |
|
10 |
|
simprl |
|
11 |
|
simprr |
|
12 |
1
|
ad2antrr |
|
13 |
4
|
fmpttd |
|
14 |
13
|
adantr |
|
15 |
14
|
ffvelrnda |
|
16 |
12 15
|
sseldd |
|
17 |
|
f1of |
|
18 |
11 17
|
syl |
|
19 |
|
fvco3 |
|
20 |
18 19
|
sylan |
|
21 |
9 10 11 16 20
|
fsum |
|
22 |
8 21
|
eqtr3id |
|
23 |
|
nnuz |
|
24 |
10 23
|
eleqtrdi |
|
25 |
|
fco |
|
26 |
14 18 25
|
syl2anc |
|
27 |
26
|
ffvelrnda |
|
28 |
2
|
adantlr |
|
29 |
24 27 28
|
seqcl |
|
30 |
22 29
|
eqeltrd |
|
31 |
30
|
expr |
|
32 |
31
|
exlimdv |
|
33 |
32
|
expimpd |
|
34 |
|
fz1f1o |
|
35 |
3 34
|
syl |
|
36 |
7 33 35
|
mpjaod |
|