Metamath Proof Explorer


Theorem rrxtopnfi

Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopnfi.1 φIFin
Assertion rrxtopnfi φTopOpenmsup=MetOpenfI,gIkIfkgk2

Proof

Step Hyp Ref Expression
1 rrxtopnfi.1 φIFin
2 1 rrxtopn φTopOpenmsup=MetOpenfBasemsup,gBasemsupfldxIfxgx2
3 eqid msup=msup
4 eqid Basemsup=Basemsup
5 1 3 4 rrxbasefi φBasemsup=I
6 5 adantr φfBasemsupBasemsup=I
7 simpl φfBasemsupgBasemsupφ
8 simprl φfBasemsupgBasemsupfBasemsup
9 simpr φfBasemsupfBasemsup
10 9 6 eleqtrd φfBasemsupfI
11 8 10 syldan φfBasemsupgBasemsupfI
12 simprr φfBasemsupgBasemsupgBasemsup
13 simpr φgBasemsupgBasemsup
14 5 adantr φgBasemsupBasemsup=I
15 13 14 eleqtrd φgBasemsupgI
16 12 15 syldan φfBasemsupgBasemsupgI
17 elmapi fIf:I
18 17 adantr fIgIf:I
19 18 ffvelcdmda fIgIxIfx
20 elmapi gIg:I
21 20 adantl fIgIg:I
22 21 ffvelcdmda fIgIxIgx
23 19 22 resubcld fIgIxIfxgx
24 23 resqcld fIgIxIfxgx2
25 eqid xIfxgx2=xIfxgx2
26 24 25 fmptd fIgIxIfxgx2:I
27 26 3adant1 φfIgIxIfxgx2:I
28 1 3ad2ant1 φfIgIIFin
29 0red φfIgI0
30 27 28 29 fidmfisupp φfIgIfinSupp0xIfxgx2
31 regsumsupp xIfxgx2:IfinSupp0xIfxgx2IFinfldxIfxgx2=kxIfxgx2supp0xIfxgx2k
32 27 30 28 31 syl3anc φfIgIfldxIfxgx2=kxIfxgx2supp0xIfxgx2k
33 ax-resscn
34 33 a1i fI
35 17 34 fssd fIf:I
36 35 3ad2ant2 φfIgIf:I
37 36 ffvelcdmda φfIgIxIfx
38 33 a1i gI
39 20 38 fssd gIg:I
40 39 3ad2ant3 φfIgIg:I
41 40 ffvelcdmda φfIgIxIgx
42 37 41 subcld φfIgIxIfxgx
43 42 sqcld φfIgIxIfxgx2
44 43 25 fmptd φfIgIxIfxgx2:I
45 28 44 fsumsupp0 φfIgIkxIfxgx2supp0xIfxgx2k=kIxIfxgx2k
46 eqidd φfIgIkIxIfxgx2=xIfxgx2
47 fveq2 x=kfx=fk
48 fveq2 x=kgx=gk
49 47 48 oveq12d x=kfxgx=fkgk
50 49 oveq1d x=kfxgx2=fkgk2
51 50 adantl φfIgIkIx=kfxgx2=fkgk2
52 simpr φfIgIkIkI
53 ovexd φfIgIkIfkgk2V
54 46 51 52 53 fvmptd φfIgIkIxIfxgx2k=fkgk2
55 54 sumeq2dv φfIgIkIxIfxgx2k=kIfkgk2
56 32 45 55 3eqtrd φfIgIfldxIfxgx2=kIfkgk2
57 56 fveq2d φfIgIfldxIfxgx2=kIfkgk2
58 7 11 16 57 syl3anc φfBasemsupgBasemsupfldxIfxgx2=kIfkgk2
59 5 6 58 mpoeq123dva φfBasemsup,gBasemsupfldxIfxgx2=fI,gIkIfkgk2
60 59 fveq2d φMetOpenfBasemsup,gBasemsupfldxIfxgx2=MetOpenfI,gIkIfkgk2
61 2 60 eqtrd φTopOpenmsup=MetOpenfI,gIkIfkgk2