Description: The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrxtopnfi.1 | |
|
Assertion | rrxtopnfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxtopnfi.1 | |
|
2 | 1 | rrxtopn | |
3 | eqid | |
|
4 | eqid | |
|
5 | 1 3 4 | rrxbasefi | |
6 | 5 | adantr | |
7 | simpl | |
|
8 | simprl | |
|
9 | simpr | |
|
10 | 9 6 | eleqtrd | |
11 | 8 10 | syldan | |
12 | simprr | |
|
13 | simpr | |
|
14 | 5 | adantr | |
15 | 13 14 | eleqtrd | |
16 | 12 15 | syldan | |
17 | elmapi | |
|
18 | 17 | adantr | |
19 | 18 | ffvelcdmda | |
20 | elmapi | |
|
21 | 20 | adantl | |
22 | 21 | ffvelcdmda | |
23 | 19 22 | resubcld | |
24 | 23 | resqcld | |
25 | eqid | |
|
26 | 24 25 | fmptd | |
27 | 26 | 3adant1 | |
28 | 1 | 3ad2ant1 | |
29 | 0red | |
|
30 | 27 28 29 | fidmfisupp | |
31 | regsumsupp | |
|
32 | 27 30 28 31 | syl3anc | |
33 | ax-resscn | |
|
34 | 33 | a1i | |
35 | 17 34 | fssd | |
36 | 35 | 3ad2ant2 | |
37 | 36 | ffvelcdmda | |
38 | 33 | a1i | |
39 | 20 38 | fssd | |
40 | 39 | 3ad2ant3 | |
41 | 40 | ffvelcdmda | |
42 | 37 41 | subcld | |
43 | 42 | sqcld | |
44 | 43 25 | fmptd | |
45 | 28 44 | fsumsupp0 | |
46 | eqidd | |
|
47 | fveq2 | |
|
48 | fveq2 | |
|
49 | 47 48 | oveq12d | |
50 | 49 | oveq1d | |
51 | 50 | adantl | |
52 | simpr | |
|
53 | ovexd | |
|
54 | 46 51 52 53 | fvmptd | |
55 | 54 | sumeq2dv | |
56 | 32 45 55 | 3eqtrd | |
57 | 56 | fveq2d | |
58 | 7 11 16 57 | syl3anc | |
59 | 5 6 58 | mpoeq123dva | |
60 | 59 | fveq2d | |
61 | 2 60 | eqtrd | |