Step |
Hyp |
Ref |
Expression |
1 |
|
ballss3.y |
|- F/ x ph |
2 |
|
ballss3.d |
|- ( ph -> D e. ( PsMet ` X ) ) |
3 |
|
ballss3.p |
|- ( ph -> P e. X ) |
4 |
|
ballss3.r |
|- ( ph -> R e. RR* ) |
5 |
|
ballss3.a |
|- ( ( ph /\ x e. X /\ ( P D x ) < R ) -> x e. A ) |
6 |
|
simpl |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ph ) |
7 |
|
simpr |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. ( P ( ball ` D ) R ) ) |
8 |
|
elblps |
|- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
9 |
2 3 4 8
|
syl3anc |
|- ( ph -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
11 |
7 10
|
mpbid |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. X /\ ( P D x ) < R ) ) |
12 |
11
|
simpld |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. X ) |
13 |
11
|
simprd |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) < R ) |
14 |
6 12 13 5
|
syl3anc |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. A ) |
15 |
14
|
ex |
|- ( ph -> ( x e. ( P ( ball ` D ) R ) -> x e. A ) ) |
16 |
1 15
|
ralrimi |
|- ( ph -> A. x e. ( P ( ball ` D ) R ) x e. A ) |
17 |
|
dfss3 |
|- ( ( P ( ball ` D ) R ) C_ A <-> A. x e. ( P ( ball ` D ) R ) x e. A ) |
18 |
16 17
|
sylibr |
|- ( ph -> ( P ( ball ` D ) R ) C_ A ) |