| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballss3.y |
|- F/ x ph |
| 2 |
|
ballss3.d |
|- ( ph -> D e. ( PsMet ` X ) ) |
| 3 |
|
ballss3.p |
|- ( ph -> P e. X ) |
| 4 |
|
ballss3.r |
|- ( ph -> R e. RR* ) |
| 5 |
|
ballss3.a |
|- ( ( ph /\ x e. X /\ ( P D x ) < R ) -> x e. A ) |
| 6 |
|
simpl |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ph ) |
| 7 |
|
simpr |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. ( P ( ball ` D ) R ) ) |
| 8 |
|
elblps |
|- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR* ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 9 |
2 3 4 8
|
syl3anc |
|- ( ph -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. ( P ( ball ` D ) R ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 11 |
7 10
|
mpbid |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( x e. X /\ ( P D x ) < R ) ) |
| 12 |
11
|
simpld |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. X ) |
| 13 |
11
|
simprd |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> ( P D x ) < R ) |
| 14 |
6 12 13 5
|
syl3anc |
|- ( ( ph /\ x e. ( P ( ball ` D ) R ) ) -> x e. A ) |
| 15 |
14
|
ex |
|- ( ph -> ( x e. ( P ( ball ` D ) R ) -> x e. A ) ) |
| 16 |
1 15
|
ralrimi |
|- ( ph -> A. x e. ( P ( ball ` D ) R ) x e. A ) |
| 17 |
|
dfss3 |
|- ( ( P ( ball ` D ) R ) C_ A <-> A. x e. ( P ( ball ` D ) R ) x e. A ) |
| 18 |
16 17
|
sylibr |
|- ( ph -> ( P ( ball ` D ) R ) C_ A ) |