Metamath Proof Explorer


Theorem ixpssmapc

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ixpssmapc.x
|- F/ x ph
ixpssmapc.c
|- ( ph -> C e. V )
ixpssmapc.b
|- ( ( ph /\ x e. A ) -> B C_ C )
Assertion ixpssmapc
|- ( ph -> X_ x e. A B C_ ( C ^m A ) )

Proof

Step Hyp Ref Expression
1 ixpssmapc.x
 |-  F/ x ph
2 ixpssmapc.c
 |-  ( ph -> C e. V )
3 ixpssmapc.b
 |-  ( ( ph /\ x e. A ) -> B C_ C )
4 3 ex
 |-  ( ph -> ( x e. A -> B C_ C ) )
5 1 4 ralrimi
 |-  ( ph -> A. x e. A B C_ C )
6 iunss
 |-  ( U_ x e. A B C_ C <-> A. x e. A B C_ C )
7 5 6 sylibr
 |-  ( ph -> U_ x e. A B C_ C )
8 2 7 ssexd
 |-  ( ph -> U_ x e. A B e. _V )
9 ixpssmap2g
 |-  ( U_ x e. A B e. _V -> X_ x e. A B C_ ( U_ x e. A B ^m A ) )
10 8 9 syl
 |-  ( ph -> X_ x e. A B C_ ( U_ x e. A B ^m A ) )
11 mapss
 |-  ( ( C e. V /\ U_ x e. A B C_ C ) -> ( U_ x e. A B ^m A ) C_ ( C ^m A ) )
12 2 7 11 syl2anc
 |-  ( ph -> ( U_ x e. A B ^m A ) C_ ( C ^m A ) )
13 10 12 sstrd
 |-  ( ph -> X_ x e. A B C_ ( C ^m A ) )