| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ixpssmapc.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
ixpssmapc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 3 |
|
ixpssmapc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
| 4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶 ) ) |
| 5 |
1 4
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 6 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 7 |
5 6
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 8 |
2 7
|
ssexd |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 9 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ) |
| 11 |
|
mapss |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ⊆ ( 𝐶 ↑m 𝐴 ) ) |
| 12 |
2 7 11
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴 ) ⊆ ( 𝐶 ↑m 𝐴 ) ) |
| 13 |
10 12
|
sstrd |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐶 ↑m 𝐴 ) ) |