Metamath Proof Explorer


Theorem ixpssmapc

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ixpssmapc.x xφ
ixpssmapc.c φCV
ixpssmapc.b φxABC
Assertion ixpssmapc φxABCA

Proof

Step Hyp Ref Expression
1 ixpssmapc.x xφ
2 ixpssmapc.c φCV
3 ixpssmapc.b φxABC
4 3 ex φxABC
5 1 4 ralrimi φxABC
6 iunss xABCxABC
7 5 6 sylibr φxABC
8 2 7 ssexd φxABV
9 ixpssmap2g xABVxABxABA
10 8 9 syl φxABxABA
11 mapss CVxABCxABACA
12 2 7 11 syl2anc φxABACA
13 10 12 sstrd φxABCA