Step |
Hyp |
Ref |
Expression |
1 |
|
rrnprjdstle.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
rrnprjdstle.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
3 |
|
rrnprjdstle.g |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℝ ) |
4 |
|
rrnprjdstle.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑋 ) |
5 |
|
rrnprjdstle.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
6 |
2 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
7 |
3 4
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐼 ) ∈ ℝ ) |
8 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
9 |
8
|
remetdval |
⊢ ( ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐼 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝐼 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐺 ‘ 𝐼 ) ) ) ) |
10 |
6 7 9
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝐼 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐺 ‘ 𝐼 ) ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐺 ‘ 𝐼 ) ) ) = ( ( 𝐹 ‘ 𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝐼 ) ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
14 |
13 1
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
15 |
2 14
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ℝ ↑m 𝑋 ) ) |
16 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
17 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) |
18 |
1 16 17
|
rrxbasefi |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) ) |
19 |
16 17
|
rrxbase |
⊢ ( 𝑋 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) |
21 |
18 20
|
eqtr3d |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) = { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) |
22 |
15 21
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) |
23 |
13 1
|
elmapd |
⊢ ( 𝜑 → ( 𝐺 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐺 : 𝑋 ⟶ ℝ ) ) |
24 |
3 23
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ ( ℝ ↑m 𝑋 ) ) |
25 |
24 21
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) |
26 |
|
eqid |
⊢ { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } |
27 |
26 5 8
|
rrxdstprj1 |
⊢ ( ( ( 𝑋 ∈ Fin ∧ 𝐼 ∈ 𝑋 ) ∧ ( 𝐹 ∈ { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ∧ 𝐺 ∈ { ℎ ∈ ( ℝ ↑m 𝑋 ) ∣ ℎ finSupp 0 } ) ) → ( ( 𝐹 ‘ 𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
28 |
1 4 22 25 27
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺 ‘ 𝐼 ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |
29 |
11 28
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐺 ‘ 𝐼 ) ) ) ≤ ( 𝐹 𝐷 𝐺 ) ) |