Metamath Proof Explorer


Theorem rrnprjdstle

Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses rrnprjdstle.x ( 𝜑𝑋 ∈ Fin )
rrnprjdstle.f ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
rrnprjdstle.g ( 𝜑𝐺 : 𝑋 ⟶ ℝ )
rrnprjdstle.i ( 𝜑𝐼𝑋 )
rrnprjdstle.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝑋 ) )
Assertion rrnprjdstle ( 𝜑 → ( abs ‘ ( ( 𝐹𝐼 ) − ( 𝐺𝐼 ) ) ) ≤ ( 𝐹 𝐷 𝐺 ) )

Proof

Step Hyp Ref Expression
1 rrnprjdstle.x ( 𝜑𝑋 ∈ Fin )
2 rrnprjdstle.f ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
3 rrnprjdstle.g ( 𝜑𝐺 : 𝑋 ⟶ ℝ )
4 rrnprjdstle.i ( 𝜑𝐼𝑋 )
5 rrnprjdstle.d 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝑋 ) )
6 2 4 ffvelrnd ( 𝜑 → ( 𝐹𝐼 ) ∈ ℝ )
7 3 4 ffvelrnd ( 𝜑 → ( 𝐺𝐼 ) ∈ ℝ )
8 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
9 8 remetdval ( ( ( 𝐹𝐼 ) ∈ ℝ ∧ ( 𝐺𝐼 ) ∈ ℝ ) → ( ( 𝐹𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺𝐼 ) ) = ( abs ‘ ( ( 𝐹𝐼 ) − ( 𝐺𝐼 ) ) ) )
10 6 7 9 syl2anc ( 𝜑 → ( ( 𝐹𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺𝐼 ) ) = ( abs ‘ ( ( 𝐹𝐼 ) − ( 𝐺𝐼 ) ) ) )
11 10 eqcomd ( 𝜑 → ( abs ‘ ( ( 𝐹𝐼 ) − ( 𝐺𝐼 ) ) ) = ( ( 𝐹𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺𝐼 ) ) )
12 reex ℝ ∈ V
13 12 a1i ( 𝜑 → ℝ ∈ V )
14 13 1 elmapd ( 𝜑 → ( 𝐹 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐹 : 𝑋 ⟶ ℝ ) )
15 2 14 mpbird ( 𝜑𝐹 ∈ ( ℝ ↑m 𝑋 ) )
16 eqid ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 )
17 eqid ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = ( Base ‘ ( ℝ^ ‘ 𝑋 ) )
18 1 16 17 rrxbasefi ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = ( ℝ ↑m 𝑋 ) )
19 16 17 rrxbase ( 𝑋 ∈ Fin → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } )
20 1 19 syl ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝑋 ) ) = { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } )
21 18 20 eqtr3d ( 𝜑 → ( ℝ ↑m 𝑋 ) = { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } )
22 15 21 eleqtrd ( 𝜑𝐹 ∈ { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } )
23 13 1 elmapd ( 𝜑 → ( 𝐺 ∈ ( ℝ ↑m 𝑋 ) ↔ 𝐺 : 𝑋 ⟶ ℝ ) )
24 3 23 mpbird ( 𝜑𝐺 ∈ ( ℝ ↑m 𝑋 ) )
25 24 21 eleqtrd ( 𝜑𝐺 ∈ { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } )
26 eqid { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } = { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 }
27 26 5 8 rrxdstprj1 ( ( ( 𝑋 ∈ Fin ∧ 𝐼𝑋 ) ∧ ( 𝐹 ∈ { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } ∧ 𝐺 ∈ { ∈ ( ℝ ↑m 𝑋 ) ∣ finSupp 0 } ) ) → ( ( 𝐹𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺𝐼 ) ) ≤ ( 𝐹 𝐷 𝐺 ) )
28 1 4 22 25 27 syl22anc ( 𝜑 → ( ( 𝐹𝐼 ) ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ( 𝐺𝐼 ) ) ≤ ( 𝐹 𝐷 𝐺 ) )
29 11 28 eqbrtrd ( 𝜑 → ( abs ‘ ( ( 𝐹𝐼 ) − ( 𝐺𝐼 ) ) ) ≤ ( 𝐹 𝐷 𝐺 ) )