Metamath Proof Explorer


Theorem ixpf

Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion ixpf ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴 𝑥𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 elixp2 ( 𝐹X 𝑥𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) )
2 ssiun2 ( 𝑥𝐴𝐵 𝑥𝐴 𝐵 )
3 2 sseld ( 𝑥𝐴 → ( ( 𝐹𝑥 ) ∈ 𝐵 → ( 𝐹𝑥 ) ∈ 𝑥𝐴 𝐵 ) )
4 3 ralimia ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝑥𝐴 𝐵 )
5 4 anim2i ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝑥𝐴 𝐵 ) )
6 nfcv 𝑥 𝐴
7 nfiu1 𝑥 𝑥𝐴 𝐵
8 nfcv 𝑥 𝐹
9 6 7 8 ffnfvf ( 𝐹 : 𝐴 𝑥𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝑥𝐴 𝐵 ) )
10 5 9 sylibr ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 𝑥𝐴 𝐵 )
11 10 3adant1 ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 𝑥𝐴 𝐵 )
12 1 11 sylbi ( 𝐹X 𝑥𝐴 𝐵𝐹 : 𝐴 𝑥𝐴 𝐵 )