| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐴 𝐵  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 2 |  | ssiun2 | ⊢ ( 𝑥  ∈  𝐴  →  𝐵  ⊆  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 3 | 2 | sseld | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  →  ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 4 | 3 | ralimia | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐵  →  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 5 | 4 | anim2i | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 7 |  | nfiu1 | ⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 𝐵 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 9 | 6 7 8 | ffnfvf | ⊢ ( 𝐹 : 𝐴 ⟶ ∪  𝑥  ∈  𝐴 𝐵  ↔  ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  𝐹 : 𝐴 ⟶ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 11 | 10 | 3adant1 | ⊢ ( ( 𝐹  ∈  V  ∧  𝐹  Fn  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  𝐹 : 𝐴 ⟶ ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 12 | 1 11 | sylbi | ⊢ ( 𝐹  ∈  X 𝑥  ∈  𝐴 𝐵  →  𝐹 : 𝐴 ⟶ ∪  𝑥  ∈  𝐴 𝐵 ) |