Metamath Proof Explorer


Theorem remetdval

Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007)

Ref Expression
Hypothesis remet.1 D=abs2
Assertion remetdval ABADB=AB

Proof

Step Hyp Ref Expression
1 remet.1 D=abs2
2 df-ov ADB=DAB
3 1 fveq1i DAB=abs2AB
4 2 3 eqtri ADB=abs2AB
5 opelxpi ABAB2
6 5 fvresd ABabs2AB=absAB
7 df-ov AabsB=absAB
8 recn AA
9 recn BB
10 eqid abs=abs
11 10 cnmetdval ABAabsB=AB
12 8 9 11 syl2an ABAabsB=AB
13 7 12 eqtr3id ABabsAB=AB
14 6 13 eqtrd ABabs2AB=AB
15 4 14 eqtrid ABADB=AB