Metamath Proof Explorer


Theorem iccssred

Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccssred.1 φA
iccssred.2 φB
Assertion iccssred φAB

Proof

Step Hyp Ref Expression
1 iccssred.1 φA
2 iccssred.2 φB
3 iccssre ABAB
4 1 2 3 syl2anc φAB