Metamath Proof Explorer


Theorem iccssred

Description: A closed real interval is a set of reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses iccssred.1 φ A
iccssred.2 φ B
Assertion iccssred φ A B

Proof

Step Hyp Ref Expression
1 iccssred.1 φ A
2 iccssred.2 φ B
3 iccssre A B A B
4 1 2 3 syl2anc φ A B