Metamath Proof Explorer


Theorem elixp2

Description: Membership in an infinite Cartesian product. See df-ixp for discussion of the notation. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion elixp2 FxABFVFFnAxAFxB

Proof

Step Hyp Ref Expression
1 fneq1 f=FfFnAFFnA
2 fveq1 f=Ffx=Fx
3 2 eleq1d f=FfxBFxB
4 3 ralbidv f=FxAfxBxAFxB
5 1 4 anbi12d f=FfFnAxAfxBFFnAxAFxB
6 dfixp xAB=f|fFnAxAfxB
7 5 6 elab2g FVFxABFFnAxAFxB
8 7 pm5.32i FVFxABFVFFnAxAFxB
9 elex FxABFV
10 9 pm4.71ri FxABFVFxAB
11 3anass FVFFnAxAFxBFVFFnAxAFxB
12 8 10 11 3bitr4i FxABFVFFnAxAFxB