Step |
Hyp |
Ref |
Expression |
1 |
|
rrxsnicc.1 |
|- ( ph -> A e. ( RR ^m X ) ) |
2 |
|
ixpfn |
|- ( f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) -> f Fn X ) |
3 |
2
|
adantl |
|- ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) -> f Fn X ) |
4 |
|
elmapfn |
|- ( A e. ( RR ^m X ) -> A Fn X ) |
5 |
1 4
|
syl |
|- ( ph -> A Fn X ) |
6 |
5
|
adantr |
|- ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) -> A Fn X ) |
7 |
|
simpll |
|- ( ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) /\ j e. X ) -> ph ) |
8 |
|
fveq2 |
|- ( k = j -> ( A ` k ) = ( A ` j ) ) |
9 |
8 8
|
oveq12d |
|- ( k = j -> ( ( A ` k ) [,] ( A ` k ) ) = ( ( A ` j ) [,] ( A ` j ) ) ) |
10 |
9
|
cbvixpv |
|- X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) |
11 |
10
|
eleq2i |
|- ( f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) <-> f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) |
12 |
11
|
biimpi |
|- ( f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) -> f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) |
13 |
12
|
ad2antlr |
|- ( ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) /\ j e. X ) -> f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) |
14 |
|
simpr |
|- ( ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) /\ j e. X ) -> j e. X ) |
15 |
|
elmapi |
|- ( A e. ( RR ^m X ) -> A : X --> RR ) |
16 |
1 15
|
syl |
|- ( ph -> A : X --> RR ) |
17 |
16
|
ffvelrnda |
|- ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) |
18 |
17
|
adantlr |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( A ` j ) e. RR ) |
19 |
18 18
|
iccssred |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( ( A ` j ) [,] ( A ` j ) ) C_ RR ) |
20 |
|
fvixp2 |
|- ( ( f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) /\ j e. X ) -> ( f ` j ) e. ( ( A ` j ) [,] ( A ` j ) ) ) |
21 |
20
|
adantll |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( f ` j ) e. ( ( A ` j ) [,] ( A ` j ) ) ) |
22 |
19 21
|
sseldd |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( f ` j ) e. RR ) |
23 |
22
|
rexrd |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( f ` j ) e. RR* ) |
24 |
18
|
rexrd |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( A ` j ) e. RR* ) |
25 |
|
iccleub |
|- ( ( ( A ` j ) e. RR* /\ ( A ` j ) e. RR* /\ ( f ` j ) e. ( ( A ` j ) [,] ( A ` j ) ) ) -> ( f ` j ) <_ ( A ` j ) ) |
26 |
24 24 21 25
|
syl3anc |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( f ` j ) <_ ( A ` j ) ) |
27 |
|
iccgelb |
|- ( ( ( A ` j ) e. RR* /\ ( A ` j ) e. RR* /\ ( f ` j ) e. ( ( A ` j ) [,] ( A ` j ) ) ) -> ( A ` j ) <_ ( f ` j ) ) |
28 |
24 24 21 27
|
syl3anc |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( A ` j ) <_ ( f ` j ) ) |
29 |
23 24 26 28
|
xrletrid |
|- ( ( ( ph /\ f e. X_ j e. X ( ( A ` j ) [,] ( A ` j ) ) ) /\ j e. X ) -> ( f ` j ) = ( A ` j ) ) |
30 |
7 13 14 29
|
syl21anc |
|- ( ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) /\ j e. X ) -> ( f ` j ) = ( A ` j ) ) |
31 |
3 6 30
|
eqfnfvd |
|- ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) -> f = A ) |
32 |
|
velsn |
|- ( f e. { A } <-> f = A ) |
33 |
32
|
bicomi |
|- ( f = A <-> f e. { A } ) |
34 |
33
|
biimpi |
|- ( f = A -> f e. { A } ) |
35 |
31 34
|
syl |
|- ( ( ph /\ f e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) -> f e. { A } ) |
36 |
35
|
ssd |
|- ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) C_ { A } ) |
37 |
1
|
elexd |
|- ( ph -> A e. _V ) |
38 |
16
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
39 |
38
|
leidd |
|- ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( A ` k ) ) |
40 |
38 38 38 39 39
|
eliccd |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. ( ( A ` k ) [,] ( A ` k ) ) ) |
41 |
40
|
ralrimiva |
|- ( ph -> A. k e. X ( A ` k ) e. ( ( A ` k ) [,] ( A ` k ) ) ) |
42 |
37 5 41
|
3jca |
|- ( ph -> ( A e. _V /\ A Fn X /\ A. k e. X ( A ` k ) e. ( ( A ` k ) [,] ( A ` k ) ) ) ) |
43 |
|
elixp2 |
|- ( A e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) <-> ( A e. _V /\ A Fn X /\ A. k e. X ( A ` k ) e. ( ( A ` k ) [,] ( A ` k ) ) ) ) |
44 |
42 43
|
sylibr |
|- ( ph -> A e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) |
45 |
|
snssg |
|- ( A e. ( RR ^m X ) -> ( A e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) <-> { A } C_ X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) ) |
46 |
1 45
|
syl |
|- ( ph -> ( A e. X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) <-> { A } C_ X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) ) |
47 |
44 46
|
mpbid |
|- ( ph -> { A } C_ X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) ) |
48 |
36 47
|
eqssd |
|- ( ph -> X_ k e. X ( ( A ` k ) [,] ( A ` k ) ) = { A } ) |