Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrn.i |
|
2 |
|
qndenserrn.j |
|
3 |
2
|
rrxtop |
|
4 |
1 3
|
syl |
|
5 |
|
reex |
|
6 |
|
qssre |
|
7 |
|
mapss |
|
8 |
5 6 7
|
mp2an |
|
9 |
8
|
a1i |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
1 10 11
|
rrxbasefi |
|
13 |
12
|
eqcomd |
|
14 |
|
rrxtps |
|
15 |
|
eqid |
|
16 |
11 15
|
tpsuni |
|
17 |
1 14 16
|
3syl |
|
18 |
2
|
unieqi |
|
19 |
18
|
eqcomi |
|
20 |
19
|
a1i |
|
21 |
13 17 20
|
3eqtrd |
|
22 |
9 21
|
sseqtrd |
|
23 |
|
eqid |
|
24 |
23
|
clsss3 |
|
25 |
4 22 24
|
syl2anc |
|
26 |
21
|
eqcomd |
|
27 |
25 26
|
sseqtrd |
|
28 |
1
|
ad2antrr |
|
29 |
|
id |
|
30 |
29 2
|
eleqtrdi |
|
31 |
30
|
ad2antlr |
|
32 |
|
ne0i |
|
33 |
32
|
adantl |
|
34 |
28 15 31 33
|
qndenserrnopn |
|
35 |
|
df-rex |
|
36 |
34 35
|
sylib |
|
37 |
|
simpr |
|
38 |
|
simpl |
|
39 |
37 38
|
elind |
|
40 |
39
|
a1i |
|
41 |
40
|
eximdv |
|
42 |
36 41
|
mpd |
|
43 |
|
n0 |
|
44 |
42 43
|
sylibr |
|
45 |
44
|
ex |
|
46 |
45
|
adantlr |
|
47 |
46
|
ralrimiva |
|
48 |
4
|
adantr |
|
49 |
22
|
adantr |
|
50 |
|
simpr |
|
51 |
21
|
adantr |
|
52 |
50 51
|
eleqtrd |
|
53 |
23
|
elcls |
|
54 |
48 49 52 53
|
syl3anc |
|
55 |
47 54
|
mpbird |
|
56 |
27 55
|
eqelssd |
|