Metamath Proof Explorer


Theorem qndenserrn

Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses qndenserrn.i φIFin
qndenserrn.j J=TopOpenmsup
Assertion qndenserrn φclsJI=I

Proof

Step Hyp Ref Expression
1 qndenserrn.i φIFin
2 qndenserrn.j J=TopOpenmsup
3 2 rrxtop IFinJTop
4 1 3 syl φJTop
5 reex V
6 qssre
7 mapss VII
8 5 6 7 mp2an II
9 8 a1i φII
10 eqid msup=msup
11 eqid Basemsup=Basemsup
12 1 10 11 rrxbasefi φBasemsup=I
13 12 eqcomd φI=Basemsup
14 rrxtps IFinmsupTopSp
15 eqid TopOpenmsup=TopOpenmsup
16 11 15 tpsuni msupTopSpBasemsup=TopOpenmsup
17 1 14 16 3syl φBasemsup=TopOpenmsup
18 2 unieqi J=TopOpenmsup
19 18 eqcomi TopOpenmsup=J
20 19 a1i φTopOpenmsup=J
21 13 17 20 3eqtrd φI=J
22 9 21 sseqtrd φIJ
23 eqid J=J
24 23 clsss3 JTopIJclsJIJ
25 4 22 24 syl2anc φclsJIJ
26 21 eqcomd φJ=I
27 25 26 sseqtrd φclsJII
28 1 ad2antrr φvJxvIFin
29 id vJvJ
30 29 2 eleqtrdi vJvTopOpenmsup
31 30 ad2antlr φvJxvvTopOpenmsup
32 ne0i xvv
33 32 adantl φvJxvv
34 28 15 31 33 qndenserrnopn φvJxvyIyv
35 df-rex yIyvyyIyv
36 34 35 sylib φvJxvyyIyv
37 simpr yIyvyv
38 simpl yIyvyI
39 37 38 elind yIyvyvI
40 39 a1i φvJxvyIyvyvI
41 40 eximdv φvJxvyyIyvyyvI
42 36 41 mpd φvJxvyyvI
43 n0 vIyyvI
44 42 43 sylibr φvJxvvI
45 44 ex φvJxvvI
46 45 adantlr φxIvJxvvI
47 46 ralrimiva φxIvJxvvI
48 4 adantr φxIJTop
49 22 adantr φxIIJ
50 simpr φxIxI
51 21 adantr φxII=J
52 50 51 eleqtrd φxIxJ
53 23 elcls JTopIJxJxclsJIvJxvvI
54 48 49 52 53 syl3anc φxIxclsJIvJxvvI
55 47 54 mpbird φxIxclsJI
56 27 55 eqelssd φclsJI=I