| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qndenserrn.i |
|
| 2 |
|
qndenserrn.j |
|
| 3 |
2
|
rrxtop |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
reex |
|
| 6 |
|
qssre |
|
| 7 |
|
mapss |
|
| 8 |
5 6 7
|
mp2an |
|
| 9 |
8
|
a1i |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 10 11
|
rrxbasefi |
|
| 13 |
12
|
eqcomd |
|
| 14 |
|
rrxtps |
|
| 15 |
|
eqid |
|
| 16 |
11 15
|
tpsuni |
|
| 17 |
1 14 16
|
3syl |
|
| 18 |
2
|
unieqi |
|
| 19 |
18
|
eqcomi |
|
| 20 |
19
|
a1i |
|
| 21 |
13 17 20
|
3eqtrd |
|
| 22 |
9 21
|
sseqtrd |
|
| 23 |
|
eqid |
|
| 24 |
23
|
clsss3 |
|
| 25 |
4 22 24
|
syl2anc |
|
| 26 |
21
|
eqcomd |
|
| 27 |
25 26
|
sseqtrd |
|
| 28 |
1
|
ad2antrr |
|
| 29 |
|
id |
|
| 30 |
29 2
|
eleqtrdi |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
|
ne0i |
|
| 33 |
32
|
adantl |
|
| 34 |
28 15 31 33
|
qndenserrnopn |
|
| 35 |
|
df-rex |
|
| 36 |
34 35
|
sylib |
|
| 37 |
|
simpr |
|
| 38 |
|
simpl |
|
| 39 |
37 38
|
elind |
|
| 40 |
39
|
a1i |
|
| 41 |
40
|
eximdv |
|
| 42 |
36 41
|
mpd |
|
| 43 |
|
n0 |
|
| 44 |
42 43
|
sylibr |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
adantlr |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
4
|
adantr |
|
| 49 |
22
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
21
|
adantr |
|
| 52 |
50 51
|
eleqtrd |
|
| 53 |
23
|
elcls |
|
| 54 |
48 49 52 53
|
syl3anc |
|
| 55 |
47 54
|
mpbird |
|
| 56 |
27 55
|
eqelssd |
|