Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qndenserrn.i | |
|
qndenserrn.j | |
||
Assertion | qndenserrn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrn.i | |
|
2 | qndenserrn.j | |
|
3 | 2 | rrxtop | |
4 | 1 3 | syl | |
5 | reex | |
|
6 | qssre | |
|
7 | mapss | |
|
8 | 5 6 7 | mp2an | |
9 | 8 | a1i | |
10 | eqid | |
|
11 | eqid | |
|
12 | 1 10 11 | rrxbasefi | |
13 | 12 | eqcomd | |
14 | rrxtps | |
|
15 | eqid | |
|
16 | 11 15 | tpsuni | |
17 | 1 14 16 | 3syl | |
18 | 2 | unieqi | |
19 | 18 | eqcomi | |
20 | 19 | a1i | |
21 | 13 17 20 | 3eqtrd | |
22 | 9 21 | sseqtrd | |
23 | eqid | |
|
24 | 23 | clsss3 | |
25 | 4 22 24 | syl2anc | |
26 | 21 | eqcomd | |
27 | 25 26 | sseqtrd | |
28 | 1 | ad2antrr | |
29 | id | |
|
30 | 29 2 | eleqtrdi | |
31 | 30 | ad2antlr | |
32 | ne0i | |
|
33 | 32 | adantl | |
34 | 28 15 31 33 | qndenserrnopn | |
35 | df-rex | |
|
36 | 34 35 | sylib | |
37 | simpr | |
|
38 | simpl | |
|
39 | 37 38 | elind | |
40 | 39 | a1i | |
41 | 40 | eximdv | |
42 | 36 41 | mpd | |
43 | n0 | |
|
44 | 42 43 | sylibr | |
45 | 44 | ex | |
46 | 45 | adantlr | |
47 | 46 | ralrimiva | |
48 | 4 | adantr | |
49 | 22 | adantr | |
50 | simpr | |
|
51 | 21 | adantr | |
52 | 50 51 | eleqtrd | |
53 | 23 | elcls | |
54 | 48 49 52 53 | syl3anc | |
55 | 47 54 | mpbird | |
56 | 27 55 | eqelssd | |