| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qndenserrnopnlem.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 2 |
|
qndenserrnopnlem.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 3 |
|
qndenserrnopnlem.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) |
| 4 |
|
qndenserrnopnlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 5 |
|
qndenserrnopnlem.d |
⊢ 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 6 |
5
|
rrxmetfi |
⊢ ( 𝐼 ∈ Fin → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 8 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ ( ℝ ↑m 𝐼 ) ) → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 10 |
3 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑉 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 11 |
1
|
rrxtopnfi |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) |
| 12 |
5
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) |
| 13 |
|
eqid |
⊢ ( ℝ^ ‘ 𝐼 ) = ( ℝ^ ‘ 𝐼 ) |
| 14 |
|
eqid |
⊢ ( ℝ ↑m 𝐼 ) = ( ℝ ↑m 𝐼 ) |
| 15 |
13 14
|
rrxdsfi |
⊢ ( 𝐼 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 17 |
12 16
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = 𝐷 ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 19 |
11 18
|
eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) = ( MetOpen ‘ 𝐷 ) ) |
| 20 |
10 19
|
eleqtrd |
⊢ ( 𝜑 → 𝑉 ∈ ( MetOpen ‘ 𝐷 ) ) |
| 21 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
| 22 |
21
|
mopni2 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ( ℝ ↑m 𝐼 ) ) ∧ 𝑉 ∈ ( MetOpen ‘ 𝐷 ) ∧ 𝑋 ∈ 𝑉 ) → ∃ 𝑒 ∈ ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) |
| 23 |
9 20 4 22
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑒 ∈ ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) |
| 24 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → 𝐼 ∈ Fin ) |
| 25 |
|
rrxtps |
⊢ ( 𝐼 ∈ Fin → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → ( ℝ^ ‘ 𝐼 ) ∈ TopSp ) |
| 27 |
|
eqid |
⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) |
| 28 |
27 2
|
istps |
⊢ ( ( ℝ^ ‘ 𝐼 ) ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
| 29 |
26 28
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) |
| 30 |
1 13 27
|
rrxbasefi |
⊢ ( 𝜑 → ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) = ( ℝ ↑m 𝐼 ) ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) = ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 32 |
29 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ) |
| 33 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( ℝ ↑m 𝐼 ) ) ∧ 𝑉 ∈ 𝐽 ) → 𝑉 ⊆ ( ℝ ↑m 𝐼 ) ) |
| 34 |
32 3 33
|
syl2anc |
⊢ ( 𝜑 → 𝑉 ⊆ ( ℝ ↑m 𝐼 ) ) |
| 35 |
34 4
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 36 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → 𝑋 ∈ ( ℝ ↑m 𝐼 ) ) |
| 37 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → 𝑒 ∈ ℝ+ ) |
| 38 |
24 36 5 37
|
qndenserrnbl |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ) |
| 39 |
|
ssel |
⊢ ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) → 𝑦 ∈ 𝑉 ) ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ∧ 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) → 𝑦 ∈ 𝑉 ) ) |
| 41 |
40
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) ∧ 𝑦 ∈ ( ℚ ↑m 𝐼 ) ) → ( 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) → 𝑦 ∈ 𝑉 ) ) |
| 42 |
41
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → ( ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) ) |
| 43 |
38 42
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 ) → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) |
| 44 |
43
|
3exp |
⊢ ( 𝜑 → ( 𝑒 ∈ ℝ+ → ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) ) ) |
| 45 |
44
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑒 ∈ ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ⊆ 𝑉 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) ) |
| 46 |
23 45
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( ℚ ↑m 𝐼 ) 𝑦 ∈ 𝑉 ) |