| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qndenserrnopnlem.i | ⊢ ( 𝜑  →  𝐼  ∈  Fin ) | 
						
							| 2 |  | qndenserrnopnlem.j | ⊢ 𝐽  =  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 3 |  | qndenserrnopnlem.v | ⊢ ( 𝜑  →  𝑉  ∈  𝐽 ) | 
						
							| 4 |  | qndenserrnopnlem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 |  | qndenserrnopnlem.d | ⊢ 𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 6 | 5 | rrxmetfi | ⊢ ( 𝐼  ∈  Fin  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 8 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ ( ℝ  ↑m  𝐼 ) )  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 10 | 3 2 | eleqtrdi | ⊢ ( 𝜑  →  𝑉  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 11 | 1 | rrxtopnfi | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( MetOpen ‘ ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) | 
						
							| 12 | 5 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( dist ‘ ( ℝ^ ‘ 𝐼 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( ℝ^ ‘ 𝐼 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 14 |  | eqid | ⊢ ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 15 | 13 14 | rrxdsfi | ⊢ ( 𝐼  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) | 
						
							| 17 | 12 16 | eqtr2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) )  =  𝐷 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝑓  ∈  ( ℝ  ↑m  𝐼 ) ,  𝑔  ∈  ( ℝ  ↑m  𝐼 )  ↦  ( √ ‘ Σ 𝑘  ∈  𝐼 ( ( ( 𝑓 ‘ 𝑘 )  −  ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 19 | 11 18 | eqtrd | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 20 | 10 19 | eleqtrd | ⊢ ( 𝜑  →  𝑉  ∈  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 21 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 22 | 21 | mopni2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝐼 ) )  ∧  𝑉  ∈  ( MetOpen ‘ 𝐷 )  ∧  𝑋  ∈  𝑉 )  →  ∃ 𝑒  ∈  ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 ) | 
						
							| 23 | 9 20 4 22 | syl3anc | ⊢ ( 𝜑  →  ∃ 𝑒  ∈  ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 ) | 
						
							| 24 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  𝐼  ∈  Fin ) | 
						
							| 25 |  | rrxtps | ⊢ ( 𝐼  ∈  Fin  →  ( ℝ^ ‘ 𝐼 )  ∈  TopSp ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  ( ℝ^ ‘ 𝐼 )  ∈  TopSp ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) | 
						
							| 28 | 27 2 | istps | ⊢ ( ( ℝ^ ‘ 𝐼 )  ∈  TopSp  ↔  𝐽  ∈  ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) | 
						
							| 29 | 26 28 | sylib | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) ) ) | 
						
							| 30 | 1 13 27 | rrxbasefi | ⊢ ( 𝜑  →  ( Base ‘ ( ℝ^ ‘ 𝐼 ) )  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( 𝜑  →  ( TopOn ‘ ( Base ‘ ( ℝ^ ‘ 𝐼 ) ) )  =  ( TopOn ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 32 | 29 31 | eleqtrd | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ ( ℝ  ↑m  𝐼 ) ) ) | 
						
							| 33 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ( ℝ  ↑m  𝐼 ) )  ∧  𝑉  ∈  𝐽 )  →  𝑉  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 34 | 32 3 33 | syl2anc | ⊢ ( 𝜑  →  𝑉  ⊆  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 35 | 34 4 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  𝑋  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 37 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  𝑒  ∈  ℝ+ ) | 
						
							| 38 | 24 36 5 37 | qndenserrnbl | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 ) ) | 
						
							| 39 |  | ssel | ⊢ ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  →  𝑦  ∈  𝑉 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉  ∧  𝑦  ∈  ( ℚ  ↑m  𝐼 ) )  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  →  𝑦  ∈  𝑉 ) ) | 
						
							| 41 | 40 | 3ad2antl3 | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  ∧  𝑦  ∈  ( ℚ  ↑m  𝐼 ) )  →  ( 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  →  𝑦  ∈  𝑉 ) ) | 
						
							| 42 | 41 | reximdva | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  ( ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) ) | 
						
							| 43 | 38 42 | mpd | ⊢ ( ( 𝜑  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉 )  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) | 
						
							| 44 | 43 | 3exp | ⊢ ( 𝜑  →  ( 𝑒  ∈  ℝ+  →  ( ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) ) ) | 
						
							| 45 | 44 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑒  ∈  ℝ+ ( 𝑋 ( ball ‘ 𝐷 ) 𝑒 )  ⊆  𝑉  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) ) | 
						
							| 46 | 23 45 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ( ℚ  ↑m  𝐼 ) 𝑦  ∈  𝑉 ) |