| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumreclf.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fsumreclf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fsumreclf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 6 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 7 | 4 5 6 | cbvsum | ⊢ Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝐴 | 
						
							| 10 | 1 9 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝐴 ) | 
						
							| 11 | 6 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ | 
						
							| 12 | 10 11 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝐴  ↔  𝑗  ∈  𝐴 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐴 ) ) ) | 
						
							| 15 | 4 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) ) | 
						
							| 17 | 12 16 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 18 | 2 17 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 19 | 8 18 | eqeltrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  ∈  ℝ ) |