| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumlessf.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fsumge0.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fsumge0.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | fsumge0.l | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 5 |  | fsumless.c | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝐴 | 
						
							| 7 | 1 6 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝐴 ) | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 9 | 8 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ | 
						
							| 10 | 7 9 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 11 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝐴  ↔  𝑗  ∈  𝐴 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐴 ) ) ) | 
						
							| 13 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℝ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) ) ) | 
						
							| 16 | 10 15 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℝ ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑘  ≤ | 
						
							| 19 | 17 18 8 | nfbr | ⊢ Ⅎ 𝑘 0  ≤  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 20 | 7 19 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  0  ≤  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 21 | 13 | breq2d | ⊢ ( 𝑘  =  𝑗  →  ( 0  ≤  𝐵  ↔  0  ≤  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 22 | 12 21 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  0  ≤  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) ) ) | 
						
							| 23 | 20 22 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  0  ≤  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 24 | 2 16 23 5 | fsumless | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ≤  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 26 | 13 25 8 | cbvsum | ⊢ Σ 𝑘  ∈  𝐶 𝐵  =  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 27 | 13 25 8 | cbvsum | ⊢ Σ 𝑘  ∈  𝐴 𝐵  =  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 28 | 26 27 | breq12i | ⊢ ( Σ 𝑘  ∈  𝐶 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵  ↔  Σ 𝑗  ∈  𝐶 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ≤  Σ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 29 | 24 28 | sylibr | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐶 𝐵  ≤  Σ 𝑘  ∈  𝐴 𝐵 ) |