| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumlessf.k |  |-  F/ k ph | 
						
							| 2 |  | fsumge0.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fsumge0.b |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 4 |  | fsumge0.l |  |-  ( ( ph /\ k e. A ) -> 0 <_ B ) | 
						
							| 5 |  | fsumless.c |  |-  ( ph -> C C_ A ) | 
						
							| 6 |  | nfv |  |-  F/ k j e. A | 
						
							| 7 | 1 6 | nfan |  |-  F/ k ( ph /\ j e. A ) | 
						
							| 8 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 9 | 8 | nfel1 |  |-  F/ k [_ j / k ]_ B e. RR | 
						
							| 10 | 7 9 | nfim |  |-  F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) | 
						
							| 11 |  | eleq1w |  |-  ( k = j -> ( k e. A <-> j e. A ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) | 
						
							| 13 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 14 | 13 | eleq1d |  |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) | 
						
							| 15 | 12 14 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. A ) -> B e. RR ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) ) ) | 
						
							| 16 | 10 15 3 | chvarfv |  |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) | 
						
							| 17 |  | nfcv |  |-  F/_ k 0 | 
						
							| 18 |  | nfcv |  |-  F/_ k <_ | 
						
							| 19 | 17 18 8 | nfbr |  |-  F/ k 0 <_ [_ j / k ]_ B | 
						
							| 20 | 7 19 | nfim |  |-  F/ k ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) | 
						
							| 21 | 13 | breq2d |  |-  ( k = j -> ( 0 <_ B <-> 0 <_ [_ j / k ]_ B ) ) | 
						
							| 22 | 12 21 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. A ) -> 0 <_ B ) <-> ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) ) ) | 
						
							| 23 | 20 22 4 | chvarfv |  |-  ( ( ph /\ j e. A ) -> 0 <_ [_ j / k ]_ B ) | 
						
							| 24 | 2 16 23 5 | fsumless |  |-  ( ph -> sum_ j e. C [_ j / k ]_ B <_ sum_ j e. A [_ j / k ]_ B ) | 
						
							| 25 |  | nfcv |  |-  F/_ j B | 
						
							| 26 | 13 25 8 | cbvsum |  |-  sum_ k e. C B = sum_ j e. C [_ j / k ]_ B | 
						
							| 27 | 13 25 8 | cbvsum |  |-  sum_ k e. A B = sum_ j e. A [_ j / k ]_ B | 
						
							| 28 | 26 27 | breq12i |  |-  ( sum_ k e. C B <_ sum_ k e. A B <-> sum_ j e. C [_ j / k ]_ B <_ sum_ j e. A [_ j / k ]_ B ) | 
						
							| 29 | 24 28 | sylibr |  |-  ( ph -> sum_ k e. C B <_ sum_ k e. A B ) |