Metamath Proof Explorer


Theorem fsumlessf

Description: A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumlessf.k kφ
fsumge0.a φAFin
fsumge0.b φkAB
fsumge0.l φkA0B
fsumless.c φCA
Assertion fsumlessf φkCBkAB

Proof

Step Hyp Ref Expression
1 fsumlessf.k kφ
2 fsumge0.a φAFin
3 fsumge0.b φkAB
4 fsumge0.l φkA0B
5 fsumless.c φCA
6 nfv kjA
7 1 6 nfan kφjA
8 nfcsb1v _kj/kB
9 8 nfel1 kj/kB
10 7 9 nfim kφjAj/kB
11 eleq1w k=jkAjA
12 11 anbi2d k=jφkAφjA
13 csbeq1a k=jB=j/kB
14 13 eleq1d k=jBj/kB
15 12 14 imbi12d k=jφkABφjAj/kB
16 10 15 3 chvarfv φjAj/kB
17 nfcv _k0
18 nfcv _k
19 17 18 8 nfbr k0j/kB
20 7 19 nfim kφjA0j/kB
21 13 breq2d k=j0B0j/kB
22 12 21 imbi12d k=jφkA0BφjA0j/kB
23 20 22 4 chvarfv φjA0j/kB
24 2 16 23 5 fsumless φjCj/kBjAj/kB
25 nfcv _jC
26 nfcv _kC
27 nfcv _jB
28 13 25 26 27 8 cbvsum kCB=jCj/kB
29 nfcv _jA
30 nfcv _kA
31 13 29 30 27 8 cbvsum kAB=jAj/kB
32 28 31 breq12i kCBkABjCj/kBjAj/kB
33 24 32 sylibr φkCBkAB