| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumreclf.k |  |-  F/ k ph | 
						
							| 2 |  | fsumreclf.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fsumreclf.b |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 4 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 5 |  | nfcv |  |-  F/_ j B | 
						
							| 6 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 7 | 4 5 6 | cbvsum |  |-  sum_ k e. A B = sum_ j e. A [_ j / k ]_ B | 
						
							| 8 | 7 | a1i |  |-  ( ph -> sum_ k e. A B = sum_ j e. A [_ j / k ]_ B ) | 
						
							| 9 |  | nfv |  |-  F/ k j e. A | 
						
							| 10 | 1 9 | nfan |  |-  F/ k ( ph /\ j e. A ) | 
						
							| 11 | 6 | nfel1 |  |-  F/ k [_ j / k ]_ B e. RR | 
						
							| 12 | 10 11 | nfim |  |-  F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) | 
						
							| 13 |  | eleq1w |  |-  ( k = j -> ( k e. A <-> j e. A ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) | 
						
							| 15 | 4 | eleq1d |  |-  ( k = j -> ( B e. RR <-> [_ j / k ]_ B e. RR ) ) | 
						
							| 16 | 14 15 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. A ) -> B e. RR ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) ) ) | 
						
							| 17 | 12 16 3 | chvarfv |  |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. RR ) | 
						
							| 18 | 2 17 | fsumrecl |  |-  ( ph -> sum_ j e. A [_ j / k ]_ B e. RR ) | 
						
							| 19 | 8 18 | eqeltrd |  |-  ( ph -> sum_ k e. A B e. RR ) |