Metamath Proof Explorer


Theorem fsumreclf

Description: Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses fsumreclf.k kφ
fsumreclf.a φAFin
fsumreclf.b φkAB
Assertion fsumreclf φkAB

Proof

Step Hyp Ref Expression
1 fsumreclf.k kφ
2 fsumreclf.a φAFin
3 fsumreclf.b φkAB
4 csbeq1a k=jB=j/kB
5 nfcv _jA
6 nfcv _kA
7 nfcv _jB
8 nfcsb1v _kj/kB
9 4 5 6 7 8 cbvsum kAB=jAj/kB
10 9 a1i φkAB=jAj/kB
11 nfv kjA
12 1 11 nfan kφjA
13 8 nfel1 kj/kB
14 12 13 nfim kφjAj/kB
15 eleq1w k=jkAjA
16 15 anbi2d k=jφkAφjA
17 4 eleq1d k=jBj/kB
18 16 17 imbi12d k=jφkABφjAj/kB
19 14 18 3 chvarfv φjAj/kB
20 2 19 fsumrecl φjAj/kB
21 10 20 eqeltrd φkAB