| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrndistlt.i |  |-  ( ph -> I e. Fin ) | 
						
							| 2 |  | rrndistlt.z |  |-  ( ph -> I =/= (/) ) | 
						
							| 3 |  | rrndistlt.n |  |-  N = ( # ` I ) | 
						
							| 4 |  | rrndistlt.x |  |-  ( ph -> X e. ( RR ^m I ) ) | 
						
							| 5 |  | rrndistlt.y |  |-  ( ph -> Y e. ( RR ^m I ) ) | 
						
							| 6 |  | rrndistlt.l |  |-  ( ( ph /\ i e. I ) -> ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) < E ) | 
						
							| 7 |  | rrndistlt.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 8 |  | rrndistlt.d |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 9 |  | elmapi |  |-  ( X e. ( RR ^m I ) -> X : I --> RR ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> X : I --> RR ) | 
						
							| 11 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 12 | 11 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 13 | 10 12 | fssd |  |-  ( ph -> X : I --> CC ) | 
						
							| 14 | 13 | ffvelcdmda |  |-  ( ( ph /\ i e. I ) -> ( X ` i ) e. CC ) | 
						
							| 15 |  | elmapi |  |-  ( Y e. ( RR ^m I ) -> Y : I --> RR ) | 
						
							| 16 | 5 15 | syl |  |-  ( ph -> Y : I --> RR ) | 
						
							| 17 | 16 12 | fssd |  |-  ( ph -> Y : I --> CC ) | 
						
							| 18 | 17 | ffvelcdmda |  |-  ( ( ph /\ i e. I ) -> ( Y ` i ) e. CC ) | 
						
							| 19 | 14 18 | subcld |  |-  ( ( ph /\ i e. I ) -> ( ( X ` i ) - ( Y ` i ) ) e. CC ) | 
						
							| 20 | 19 | abscld |  |-  ( ( ph /\ i e. I ) -> ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) e. RR ) | 
						
							| 21 | 20 | resqcld |  |-  ( ( ph /\ i e. I ) -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) e. RR ) | 
						
							| 22 | 7 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 23 | 22 | resqcld |  |-  ( ph -> ( E ^ 2 ) e. RR ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ i e. I ) -> ( E ^ 2 ) e. RR ) | 
						
							| 25 | 19 | absge0d |  |-  ( ( ph /\ i e. I ) -> 0 <_ ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ) | 
						
							| 26 | 22 | adantr |  |-  ( ( ph /\ i e. I ) -> E e. RR ) | 
						
							| 27 | 7 | adantr |  |-  ( ( ph /\ i e. I ) -> E e. RR+ ) | 
						
							| 28 | 27 | rpge0d |  |-  ( ( ph /\ i e. I ) -> 0 <_ E ) | 
						
							| 29 |  | lt2sq |  |-  ( ( ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) e. RR /\ 0 <_ ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ) /\ ( E e. RR /\ 0 <_ E ) ) -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) < E <-> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) < ( E ^ 2 ) ) ) | 
						
							| 30 | 20 25 26 28 29 | syl22anc |  |-  ( ( ph /\ i e. I ) -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) < E <-> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) < ( E ^ 2 ) ) ) | 
						
							| 31 | 6 30 | mpbid |  |-  ( ( ph /\ i e. I ) -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) < ( E ^ 2 ) ) | 
						
							| 32 | 1 2 21 24 31 | fsumlt |  |-  ( ph -> sum_ i e. I ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) < sum_ i e. I ( E ^ 2 ) ) | 
						
							| 33 | 10 | ffvelcdmda |  |-  ( ( ph /\ i e. I ) -> ( X ` i ) e. RR ) | 
						
							| 34 | 16 | ffvelcdmda |  |-  ( ( ph /\ i e. I ) -> ( Y ` i ) e. RR ) | 
						
							| 35 | 33 34 | resubcld |  |-  ( ( ph /\ i e. I ) -> ( ( X ` i ) - ( Y ` i ) ) e. RR ) | 
						
							| 36 |  | absresq |  |-  ( ( ( X ` i ) - ( Y ` i ) ) e. RR -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) = ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ph /\ i e. I ) -> ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) = ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 38 | 37 | eqcomd |  |-  ( ( ph /\ i e. I ) -> ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) = ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) ) | 
						
							| 39 | 38 | sumeq2dv |  |-  ( ph -> sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) = sum_ i e. I ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) ) | 
						
							| 40 | 11 23 | sselid |  |-  ( ph -> ( E ^ 2 ) e. CC ) | 
						
							| 41 |  | fsumconst |  |-  ( ( I e. Fin /\ ( E ^ 2 ) e. CC ) -> sum_ i e. I ( E ^ 2 ) = ( ( # ` I ) x. ( E ^ 2 ) ) ) | 
						
							| 42 | 1 40 41 | syl2anc |  |-  ( ph -> sum_ i e. I ( E ^ 2 ) = ( ( # ` I ) x. ( E ^ 2 ) ) ) | 
						
							| 43 |  | eqcom |  |-  ( N = ( # ` I ) <-> ( # ` I ) = N ) | 
						
							| 44 | 3 43 | mpbi |  |-  ( # ` I ) = N | 
						
							| 45 | 44 | oveq1i |  |-  ( ( # ` I ) x. ( E ^ 2 ) ) = ( N x. ( E ^ 2 ) ) | 
						
							| 46 | 45 | a1i |  |-  ( ph -> ( ( # ` I ) x. ( E ^ 2 ) ) = ( N x. ( E ^ 2 ) ) ) | 
						
							| 47 | 42 46 | eqtr2d |  |-  ( ph -> ( N x. ( E ^ 2 ) ) = sum_ i e. I ( E ^ 2 ) ) | 
						
							| 48 | 39 47 | breq12d |  |-  ( ph -> ( sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) < ( N x. ( E ^ 2 ) ) <-> sum_ i e. I ( ( abs ` ( ( X ` i ) - ( Y ` i ) ) ) ^ 2 ) < sum_ i e. I ( E ^ 2 ) ) ) | 
						
							| 49 | 32 48 | mpbird |  |-  ( ph -> sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) < ( N x. ( E ^ 2 ) ) ) | 
						
							| 50 |  | nfv |  |-  F/ i ph | 
						
							| 51 | 35 | resqcld |  |-  ( ( ph /\ i e. I ) -> ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) e. RR ) | 
						
							| 52 | 50 1 51 | fsumreclf |  |-  ( ph -> sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) e. RR ) | 
						
							| 53 | 35 | sqge0d |  |-  ( ( ph /\ i e. I ) -> 0 <_ ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 54 | 1 51 53 | fsumge0 |  |-  ( ph -> 0 <_ sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 55 |  | hashcl |  |-  ( I e. Fin -> ( # ` I ) e. NN0 ) | 
						
							| 56 | 1 55 | syl |  |-  ( ph -> ( # ` I ) e. NN0 ) | 
						
							| 57 | 3 56 | eqeltrid |  |-  ( ph -> N e. NN0 ) | 
						
							| 58 | 57 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 59 | 58 23 | remulcld |  |-  ( ph -> ( N x. ( E ^ 2 ) ) e. RR ) | 
						
							| 60 | 57 | nn0ge0d |  |-  ( ph -> 0 <_ N ) | 
						
							| 61 | 22 | sqge0d |  |-  ( ph -> 0 <_ ( E ^ 2 ) ) | 
						
							| 62 | 58 23 60 61 | mulge0d |  |-  ( ph -> 0 <_ ( N x. ( E ^ 2 ) ) ) | 
						
							| 63 | 52 54 59 62 | sqrtltd |  |-  ( ph -> ( sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) < ( N x. ( E ^ 2 ) ) <-> ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) < ( sqrt ` ( N x. ( E ^ 2 ) ) ) ) ) | 
						
							| 64 | 49 63 | mpbid |  |-  ( ph -> ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) < ( sqrt ` ( N x. ( E ^ 2 ) ) ) ) | 
						
							| 65 | 8 | a1i |  |-  ( ph -> D = ( dist ` ( RR^ ` I ) ) ) | 
						
							| 66 |  | eqid |  |-  ( RR^ ` I ) = ( RR^ ` I ) | 
						
							| 67 |  | eqid |  |-  ( RR ^m I ) = ( RR ^m I ) | 
						
							| 68 | 66 67 | rrxdsfi |  |-  ( I e. Fin -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) ) ) ) | 
						
							| 69 | 1 68 | syl |  |-  ( ph -> ( dist ` ( RR^ ` I ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) ) ) ) | 
						
							| 70 | 65 69 | eqtrd |  |-  ( ph -> D = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( sqrt ` sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) ) ) ) | 
						
							| 71 |  | fveq1 |  |-  ( f = X -> ( f ` i ) = ( X ` i ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( f = X /\ g = Y ) -> ( f ` i ) = ( X ` i ) ) | 
						
							| 73 |  | fveq1 |  |-  ( g = Y -> ( g ` i ) = ( Y ` i ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( f = X /\ g = Y ) -> ( g ` i ) = ( Y ` i ) ) | 
						
							| 75 | 72 74 | oveq12d |  |-  ( ( f = X /\ g = Y ) -> ( ( f ` i ) - ( g ` i ) ) = ( ( X ` i ) - ( Y ` i ) ) ) | 
						
							| 76 | 75 | oveq1d |  |-  ( ( f = X /\ g = Y ) -> ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) = ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 77 | 76 | sumeq2sdv |  |-  ( ( f = X /\ g = Y ) -> sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) = sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) | 
						
							| 78 | 77 | fveq2d |  |-  ( ( f = X /\ g = Y ) -> ( sqrt ` sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) ) | 
						
							| 79 | 78 | adantl |  |-  ( ( ph /\ ( f = X /\ g = Y ) ) -> ( sqrt ` sum_ i e. I ( ( ( f ` i ) - ( g ` i ) ) ^ 2 ) ) = ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) ) | 
						
							| 80 | 52 54 | resqrtcld |  |-  ( ph -> ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) e. RR ) | 
						
							| 81 | 70 79 4 5 80 | ovmpod |  |-  ( ph -> ( X D Y ) = ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) ) | 
						
							| 82 |  | sqrtmul |  |-  ( ( ( N e. RR /\ 0 <_ N ) /\ ( ( E ^ 2 ) e. RR /\ 0 <_ ( E ^ 2 ) ) ) -> ( sqrt ` ( N x. ( E ^ 2 ) ) ) = ( ( sqrt ` N ) x. ( sqrt ` ( E ^ 2 ) ) ) ) | 
						
							| 83 | 58 60 23 61 82 | syl22anc |  |-  ( ph -> ( sqrt ` ( N x. ( E ^ 2 ) ) ) = ( ( sqrt ` N ) x. ( sqrt ` ( E ^ 2 ) ) ) ) | 
						
							| 84 | 7 | rpge0d |  |-  ( ph -> 0 <_ E ) | 
						
							| 85 | 22 84 | sqrtsqd |  |-  ( ph -> ( sqrt ` ( E ^ 2 ) ) = E ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ph -> ( ( sqrt ` N ) x. ( sqrt ` ( E ^ 2 ) ) ) = ( ( sqrt ` N ) x. E ) ) | 
						
							| 87 | 83 86 | eqtr2d |  |-  ( ph -> ( ( sqrt ` N ) x. E ) = ( sqrt ` ( N x. ( E ^ 2 ) ) ) ) | 
						
							| 88 | 81 87 | breq12d |  |-  ( ph -> ( ( X D Y ) < ( ( sqrt ` N ) x. E ) <-> ( sqrt ` sum_ i e. I ( ( ( X ` i ) - ( Y ` i ) ) ^ 2 ) ) < ( sqrt ` ( N x. ( E ^ 2 ) ) ) ) ) | 
						
							| 89 | 64 88 | mpbird |  |-  ( ph -> ( X D Y ) < ( ( sqrt ` N ) x. E ) ) |