Metamath Proof Explorer


Theorem rspc6v

Description: 6-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc6v.1 x=Aφχ
rspc6v.2 y=Bχθ
rspc6v.3 z=Cθτ
rspc6v.4 w=Dτη
rspc6v.5 p=Eηζ
rspc6v.6 q=Fζψ
Assertion rspc6v ARBSCTDUEVFWxRySzTwUpVqWφψ

Proof

Step Hyp Ref Expression
1 rspc6v.1 x=Aφχ
2 rspc6v.2 y=Bχθ
3 rspc6v.3 z=Cθτ
4 rspc6v.4 w=Dτη
5 rspc6v.5 p=Eηζ
6 rspc6v.6 q=Fζψ
7 1 2ralbidv x=ApVqWφpVqWχ
8 2 2ralbidv y=BpVqWχpVqWθ
9 3 2ralbidv z=CpVqWθpVqWτ
10 4 2ralbidv w=DpVqWτpVqWη
11 7 8 9 10 rspc4v ARBSCTDUxRySzTwUpVqWφpVqWη
12 5 6 rspc2v EVFWpVqWηψ
13 11 12 syl9 ARBSCTDUEVFWxRySzTwUpVqWφψ
14 13 3impia ARBSCTDUEVFWxRySzTwUpVqWφψ