Metamath Proof Explorer


Theorem rspcdva

Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Hypotheses rspcdva.1 x=Cψχ
rspcdva.2 φxAψ
rspcdva.3 φCA
Assertion rspcdva φχ

Proof

Step Hyp Ref Expression
1 rspcdva.1 x=Cψχ
2 rspcdva.2 φxAψ
3 rspcdva.3 φCA
4 1 rspcv CAxAψχ
5 3 2 4 sylc φχ