Metamath Proof Explorer


Theorem rspcedeq2vd

Description: Restricted existential specialization, using implicit substitution. Variant of rspcedvd for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019)

Ref Expression
Hypotheses rspcedeqvd.1 φAB
rspcedeqvd.2 φx=AC=D
Assertion rspcedeq2vd φxBC=D

Proof

Step Hyp Ref Expression
1 rspcedeqvd.1 φAB
2 rspcedeqvd.2 φx=AC=D
3 2 eqcomd φx=AD=C
4 3 eqeq2d φx=AC=DC=C
5 eqidd φC=C
6 1 4 5 rspcedvd φxBC=D