Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
rspe
Next ⟩
rsp2e
Metamath Proof Explorer
Ascii
Unicode
Theorem
rspe
Description:
Restricted specialization.
(Contributed by
NM
, 12-Oct-1999)
Ref
Expression
Assertion
rspe
⊢
x
∈
A
∧
φ
→
∃
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
19.8a
⊢
x
∈
A
∧
φ
→
∃
x
x
∈
A
∧
φ
2
df-rex
⊢
∃
x
∈
A
φ
↔
∃
x
x
∈
A
∧
φ
3
1
2
sylibr
⊢
x
∈
A
∧
φ
→
∃
x
∈
A
φ