Metamath Proof Explorer


Theorem rspesbca

Description: Existence form of rspsbca . (Contributed by NM, 29-Feb-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion rspesbca AB[˙A/x]˙φxBφ

Proof

Step Hyp Ref Expression
1 dfsbcq2 y=Ayxφ[˙A/x]˙φ
2 1 rspcev AB[˙A/x]˙φyByxφ
3 cbvrexsvw xBφyByxφ
4 2 3 sylibr AB[˙A/x]˙φxBφ