Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
spesbc
Next ⟩
spesbcd
Metamath Proof Explorer
Ascii
Unicode
Theorem
spesbc
Description:
Existence form of
spsbc
.
(Contributed by
Mario Carneiro
, 18-Nov-2016)
Ref
Expression
Assertion
spesbc
⊢
[
˙
A
/
x
]
˙
φ
→
∃
x
φ
Proof
Step
Hyp
Ref
Expression
1
sbcex
⊢
[
˙
A
/
x
]
˙
φ
→
A
∈
V
2
rspesbca
⊢
A
∈
V
∧
[
˙
A
/
x
]
˙
φ
→
∃
x
∈
V
φ
3
1
2
mpancom
⊢
[
˙
A
/
x
]
˙
φ
→
∃
x
∈
V
φ
4
rexv
⊢
∃
x
∈
V
φ
↔
∃
x
φ
5
3
4
sylib
⊢
[
˙
A
/
x
]
˙
φ
→
∃
x
φ