Metamath Proof Explorer


Theorem spesbc

Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion spesbc [˙A/x]˙φxφ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙φAV
2 rspesbca AV[˙A/x]˙φxVφ
3 1 2 mpancom [˙A/x]˙φxVφ
4 rexv xVφxφ
5 3 4 sylib [˙A/x]˙φxφ