Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | spesbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
2 | rspesbca | ⊢ ( ( 𝐴 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥 ∈ V 𝜑 ) | |
3 | 1 2 | mpancom | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 ∈ V 𝜑 ) |
4 | rexv | ⊢ ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 ) | |
5 | 3 4 | sylib | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) |