Metamath Proof Explorer


Theorem spesbc

Description: Existence form of spsbc . (Contributed by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion spesbc ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ V )
2 rspesbca ( ( 𝐴 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝜑 ) → ∃ 𝑥 ∈ V 𝜑 )
3 1 2 mpancom ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 ∈ V 𝜑 )
4 rexv ( ∃ 𝑥 ∈ V 𝜑 ↔ ∃ 𝑥 𝜑 )
5 3 4 sylib ( [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 )