Metamath Proof Explorer


Theorem rspw

Description: Restricted specialization. Weak version of rsp , requiring ax-8 , but not ax-12 . (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypothesis rspw.1 x=yφψ
Assertion rspw xAφxAφ

Proof

Step Hyp Ref Expression
1 rspw.1 x=yφψ
2 df-ral xAφxxAφ
3 eleq1w x=yxAyA
4 3 1 imbi12d x=yxAφyAψ
5 4 spw xxAφxAφ
6 2 5 sylbi xAφxAφ