Metamath Proof Explorer


Theorem s1prc

Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022)

Ref Expression
Assertion s1prc ¬AV⟨“A”⟩=⟨“”⟩

Proof

Step Hyp Ref Expression
1 ids1 ⟨“A”⟩=⟨“IA”⟩
2 fvprc ¬AVIA=
3 2 s1eqd ¬AV⟨“IA”⟩=⟨“”⟩
4 1 3 eqtrid ¬AV⟨“A”⟩=⟨“”⟩