Metamath Proof Explorer


Theorem s1prc

Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022)

Ref Expression
Assertion s1prc ( ¬ 𝐴 ∈ V → ⟨“ 𝐴 ”⟩ = ⟨“ ∅ ”⟩ )

Proof

Step Hyp Ref Expression
1 ids1 ⟨“ 𝐴 ”⟩ = ⟨“ ( I ‘ 𝐴 ) ”⟩
2 fvprc ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ )
3 2 s1eqd ( ¬ 𝐴 ∈ V → ⟨“ ( I ‘ 𝐴 ) ”⟩ = ⟨“ ∅ ”⟩ )
4 1 3 eqtrid ( ¬ 𝐴 ∈ V → ⟨“ 𝐴 ”⟩ = ⟨“ ∅ ”⟩ )