Metamath Proof Explorer


Theorem s1rn

Description: The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Assertion s1rn AVran⟨“A”⟩=A

Proof

Step Hyp Ref Expression
1 s1val AV⟨“A”⟩=0A
2 1 rneqd AVran⟨“A”⟩=ran0A
3 c0ex 0V
4 3 rnsnop ran0A=A
5 2 4 eqtrdi AVran⟨“A”⟩=A